Constant speed: s = \frac{d}{t}
s: speed (m/s)
d: distance (m)
t: time (s)
Constant velocity: v = \frac{\Delta x}{t}
v: velocity
\Delta x: displacement
t: time
Acceleration: a = \frac{\Delta v}{t}
a: acceleration (m/s²)
\Delta v: change in velocity (m/s)
t: time (s)
2\sin{\Theta}\cos{\Theta} = \sin{2\Theta}
vf = vo + at
vf^2 = vo^2 + 2a\Delta x
v_f: final velocity (m/s)
v_o: initial velocity (m/s)
a: acceleration (m/s²)
t: time (s)
\Delta x: displacement (m)
Vertical motion with constant gravity can be analyzed by replacing x with y.
\Delta x = v_o t + \frac{1}{2} a t^2
\Delta x = \frac{1}{2} (vo + vf) t
Displacement as the integral of velocity: \Delta x = \int v(t) dt
\Delta x: displacement (m)
v(t): velocity as a function of time (m/s)
t: time (s)
Change in velocity as the integral of acceleration: \Delta v = \int a(t) dt
\Delta v: change in velocity (m/s)
a(t): acceleration as a function of time (m/s²)
t: time (s)
Newton's Second Law: \Sigma F = ma
\Sigma F : Sum of forces in one dimension (N)
m: mass (kg)
a: acceleration (m/s²)
Weight: w = mg
w: weight (N)
m: mass (kg)
g: gravity (m/s²)
Friction force: Ff=\mu F_{N}
F_f : Friction force (N)
\mu: Coefficient of friction (no unit)
F_N : Normal force (N)
Normal force with an angled pull: F_N = mg \pm \sin{\Theta}
Component of weight parallel to the incline: w_x = \sin{\theta} mg
w_x: Component of weight parallel to the incline (N)
\theta: Angle of incline (°)
m: mass (kg)
g: gravity (m/s²)
Component of weight perpendicular to the incline (Normal Force): F_N = \cos{\theta} mg
F_N: Normal force (N)
\theta: Angle of incline (°)
m: mass (kg)
g: gravity (m/s²)
Sum of horizontal forces: \Sigma F_x = 0
Sum of vertical forces: \Sigma F_y = 0
Sum of torques: \Sigma \tau = 0
Torque: \tau = r \times F or \tau = Fd\sin{\theta}
\tau: torque (Nm)
F: force (N)
r: distance from axis (m)
d: perpendicular distance from axis (m)
Work: W = Fd\cos{\theta}
W: work (J)
F: force (N)
d: distance (parallel to force) (m)
Work as the integral of force and distance: W = \int F dr
W: work (J)
F: force (N)
r: distance (m)
Kinetic energy: KE = \frac{1}{2} mv^2
KE: kinetic energy (J)
m: mass (kg)
v: velocity (m/s)
\Delta KE = \Sigma W = \Sigma F_{|} d
\Delta KE: change in KE (J)
\Sigma W: net work (J)
F_{|}: parallel force (N)
d: distance (m)
Gravitational potential energy: U_g = mgh
Change in potential energy is the negative integral of force and distance: \Delta U = -\int F(r) dr
* \Delta U: change in potential energy (J)
* F: force (N)
* r: distance (m)
Force is the negative derivative of potential energy with respect to distance: F = -\frac{dU(x)}{dx}
F: force (N)
U: potential energy (J)
x: distance (m)
Spring potential energy: U_s = \frac{1}{2} kx^2
U_s: potential energy (J)
k: spring constant (N/m)
x: position from equilibrium (m)
Work done by non-conservative forces: W{NC} = F{NC} d
W_{NC}: Work done by non-conservative forces (J)
F_{NC}: Non-conservative force (friction, air resistance) (N)
d: Distance (m)
Conservation of mechanical energy: E{MECH} = PEg + PEs + KE ; E{Ti} = E_{Tf}
E_{MECH}: Total mechanical energy (J)
PE_g: Gravitational Potential Energy (J)
PE_s: Spring Potential Energy (J)
KE: Kinetic Energy (J)
E_{Ti}: Initial total energy (J)
E_{Tf}: Final total energy (J)
Conservation of total energy: ET = PEg + PEs + KE + W{NC}
E_T: total energy (J)
PE_g: potential energy (J)
PE_s: potential energy (J)
KE: kinetic energy (J)
W_{NC}: work done by non-conservative forces (J)
Spring force: F = -k\Delta x
F: spring force (N)
k: spring constant (N/m)
\Delta x: position from equilibrium (m)
Power: P = \frac{W}{t} = \frac{\Delta E_T}{t}
P: power (W or J/s)
W: work (J)
\Delta E_T: total change in energy (J)
t: time (s)
Constant velocity power: P = Fv
P: power (W or J/s)
F: force (N)
v: velocity (m/s)
Instantaneous power is the derivative of work with respect to time: P_{inst} = \frac{dW}{dt}
P: power (W or J/s)
W: work (J)
t: time (s)
Momentum: p = mv
p: momentum (kg m/s)
m: mass (kg)
v: velocity (m/s)
\Sigma F = \frac{\Delta p}{t}
\Sigma F: force (N)
\Delta p: change in momentum (Ns)
t: time (s)
Force is the derivative of momentum with respect to time: F_{net} = \frac{dp}{dt}
F: force (N)
p: momentum (Ns)
t: time (s)
Impulse is the integral of force with respect to time: J = \int F_{net}(t) dt = \Delta p
J: impulse (Ns)
F: force (N)
t: time (s)
\Delta p: change in momentum (kg*m/s or Ns)
Inelastic collision: m1v1 + m2v2 = m1v1' + m2v2'
m_1: mass 1 (kg)
v_1: velocity 1 (m/s)
m_2: mass 2 (kg)
v_2: velocity 2 (m/s)
v_1': velocity 1 after collision (m/s)
v_2': velocity 2 after collision (m/s)
Elastic collision: v1 - v2 = v2' - v1'
Perfectly inelastic collision: m1v1 + m2v2 = (m1 + m2)v_f
m_1: mass 1 (kg)
v_1: velocity 1 (m/s)
m_2: mass 2 (kg)
v_2: velocity 2 (m/s)
v_f: final velocity of combined mass (m/s)
Recoil: m{total}vo = m1v{1f} + m2v{2f}
Finding height for a pendulum at an angle: h = L - \cos{\theta}L
h: height above equilibrium (m)
L: length of pendulum (m)
\theta: angle (°)
Center of mass (horizontal): x_{cm} = \frac{\Sigma mx}{\Sigma m}
x_{cm}: horizontal center of mass (m)
m: mass (kg)
x: position from reference point (m)
Vertical center of mass can be found by replacing x with y.
v_{cm} = \frac{\Sigma p}{\Sigma m} = \frac{\Sigma mv}{\Sigma m}
v_{cm}: velocity of center of mass (m/s)
\Sigma p: sum of momentum (kg m/s)
\Sigma m: sum of mass (kg)
m: mass of particle (kg)
v: velocity of particle (m/s)
\lambda = \frac{dm}{dl} OR dm = \lambda dx
\lambda: linear mass density (kg/m)
dm: mass (kg)
dl: length (m)
r_{cm} = \frac{\int r dm}{\int dm} OR \frac{1}{M} \int x dm
r_{cm}: center of mass (m)
r: distance (m)
M: total mass (kg)
Tangential velocity of a circular orbit: v_T = \frac{2\pi r}{T}
v_T: tangential velocity (m/s)
r: radius of orbit (m)
T: period of orbit (s)
ac = \frac{vT^2}{r} = r\omega^2
a_c: centripetal acceleration (m/s²)
v_T: tangential velocity (m/s)
r: radius (m)
\omega: angular velocity (rad/s)
Fc = m \frac{vT^2}{r} or Fc = mac or F_c = m \omega^2 r
F_c: centripetal force (N)
m: mass (kg)
v_T: tangential velocity (m/s)
r: radius (m)
a_c: centripetal acceleration (m/s²)
\omega: angular velocity (rad/s)
Car going around a flat turn: Ff = Fc
F_f: Friction force (N)
F_c: Centripetal force (N)
Car going around a banked turn (no friction): FN\sin{\Theta} = \frac{mvT^2}{r}
F_N: normal force (N)
m: mass (kg)
v_T: velocity (m/s)
r: radius (m)
Bottom of a vertical loop: Fc = FN - w ; FN = Fc + w
Top of a vertical loop (upside down): Fc = FN + w ; FN = Fc - w
F_N: normal force or apparent weight (N)
F_c: centripetal force (N)
w: weight (N)
Top of a vertical loop (right side up): Fc = w - FN ; FN = w - Fc
Top of a vertical loop (weightless): Fc = w ; ac = g ; v = \sqrt{rg}
Apparent gravity: g{app} = g \pm a{ext}
g_{app}: apparent gravity (m/s²)
g: gravity (m/s²)
a_{ext}: external acceleration (m/s²)
Apparent weight: FN = mg \pm ma{ext}
F_N: apparent weight (N)
m: mass (kg)
g: gravity (m/s²)
a_{ext}: external force (N)
F = G \frac{m1 m2}{r^2}
F: Gravitational force (N)
G: Gravitational constant (Nm²/kg²)
m_1: mass (kg)
m_2: mass (kg)
r: radius (m)
g = G \frac{m_p}{r^2}
g: gravity (m/s²)
G: Gravitational constant (Nm²/kg²)
m_p: mass of planet (kg)
r: radius (m)
T^2 = (\frac{4\pi^2}{GM})r^3
T: period of orbit (s)
G: grav. constant (Nm²/kg²)
M: mass of object being orbited (kg)
r: radius of orbit (m)
a_c = g
a_c: centripetal acceleration (m/s²)
g: gravity (m/s²)
Speed of a circular orbit: v = \sqrt{\frac{GM}{r}}
v: velocity of satellite (m/s)
G: grav. constant (Nm²/kg²)
M: mass of object being orbited (kg)
r: radius of orbit (m)
Distance: \Delta x = r\theta
\Delta x: linear distance (m)
r: radius of rotation (m)
\theta: angular displacement (rad)
Velocity: v_T = r\omega
v_T: linear (tangential) velocity (m/s)
r: radius of rotation (m)
\omega: angular velocity (rad/s)
Acceleration: a_T = r\alpha
a_T: linear acceleration (m/s²)
r: radius of rotation (m)
\alpha: angular acceleration (rad/s²)
Angular velocity: \omega = 2\pi f or T = \frac{2\pi}{\omega}
\omega: angular velocity (rad/s)
f: frequency (Hz)
T: period (s)
Angular velocity is the derivative of angular displacement with respect to time: \omega = \frac{d\theta}{dt}
\omega: angular velocity (rad/s)
\theta: angular displacement (rad)
t: time (s)
Angular acceleration is the derivative of angular velocity with respect to time: \alpha = \frac{d\omega}{dt}
\alpha: angular acceleration (rad/s²)
\omega: change in angular velocity (rad/s)
t: time (s)
\omegaf = \omegao + \alpha t
\omega_f: final angular velocity (rad/s)
\omega_o: initial angular velocity (rad/s)
\alpha: angular acceleration (rad/s²)
t: time (s)
\omegaf^2 = \omegao^2 + 2\alpha \Delta \theta
\Delta \theta = \omega_o t + \frac{1}{2} \alpha t^2
\Delta \theta = \frac{1}{2} (\omegao + \omegaf) t
\Delta \theta: angular displacement (rad)
General formula: I_{tot} = \Sigma I = \Sigma mr^2
I: rotational inertia
m: mass (kg)
r: radius distance from pivot (m)
Inertia of a particle: I = mr^2
m: mass (kg)
r: distance from pivot (m)
Inertia of a solid disc (cylinder): I = \frac{1}{2} mr^2
m: mass (kg)
r: radius of disc (m)
Inertia of a hollow cylinder (hoop): I = mr^2
m: mass (kg)
r: radius of cylinder (m)
Inertia of a solid sphere: I = \frac{2}{5} mr^2
m: mass (kg)
r: radius of sphere (m)
Inertia of a rod (pivot in the middle): I = \frac{1}{12} mL^2
m: mass (kg)
L: length of rod (m)
Inertia integration: I = \int r^2 dm
Parallel axis theorem: I = I_{CM} + Md^2
I: inertia at pivot (kg m²)
I_{CM}: inertia at center of mass (kg m²)
M: mass (kg)
d: distance from pivot to center of mass (m)
KE_R = \frac{1}{2} I\omega^2
KE_R: rotational KE (J)
I: rotational inertia (kg m²)
\omega: angular velocity (rad/s)
For a rotating particle: a = \sqrt{ac^2 + aT^2}
a: overall accel. (m/s²)
a_c: centripetal accel. (m/s²)
a_T: tangential accel. (m/s²)
W = \tau \Delta \Theta
Work is the integral of torque and angular displacement: W = \int \tau d\Theta
W: Work done (J)
\tau: external torque (Nm)
\Delta \Theta: angular displacement (rad)
ET = PEg + KER + KE + W{\tau}
E_T: total energy (J)
PE_g: gravitational potential energy (J)
KE_R: rotational kinetic energy (J)
KE: translational kinetic energy (J)
W_{\tau}: work done by external torque (J)
\Sigma \tau_{ext} = I\alpha OR \alpha = \frac{\Sigma \tau}{I}
\Sigma \tau_{ext}: sum of external torque (Nm)
I: rotational inertia (kg*m²)
\alpha: angular acceleration (rad/s²)
\Sigma \tau_{ext} = \frac{\Delta L}{t}
\Sigma \tau: sum of torque (Nm)
\Delta L: change in angular momentum (kg m²/s)
t: time (s)
L = r \times p = I\omega
L: angular momentum (kg m²/s)
r: radius (m)
p: linear momentum (kg*m/s)
I: rotational inertia (kg*m²)
\omega: angular velocity (rad/s)
Change in angular momentum is the integral of external torque with respect to time: \Delta L = \int \tau dt
\Delta L: change in angular momentum (kg m²/s)
\tau: external torque (Nm)
t: time (s)
Angular momentum of a particle: L = mvr\sin{\Theta}
L: angular momentum (kg m² / s)
m: mass (kg)
v: velocity (m/s)
r: radius (m)
Elastic / Inelastic: I1\omega1 + I2\omega2 = I1\omega1' + I2\omega2'
I: rotational inertia (kg m²)
\omega: angular velocity (rad/sec)
Perfectly Inelastic: I1\omega1 + I2\omega2 = (\Sigma I)\omega_f
I: rotational inertia (kg m²)
\omega: angular velocity (rad/sec)
U_G = -G \frac{Mm}{R}
U_G: potential energy (J)
G: gravitational constant (Nm²/kg²)
M: mass of planet (kg)
m: mass of satellite (kg)
R: radius (m)
Circular Orbit: E_T = -G \frac{Mm}{2R}
E_T: total energy (J)
G: gravitational constant (Nm²/kg²)
M: mass of planet (kg)
m: mass of satellite (kg)
R: radius (m)
Elliptical Orbit: E_T = -G \frac{Mm}{2a}
E_T = \frac{1}{2}mv^2 – G \frac{Mm}{r}
E_T: total energy (J)
G: grav. cons. (Nm²/kg²)
M: mass of planet (kg)
m: mass of satellite (kg)
a: semi-major axis (m)
Semi-major axis: a = \frac{apogee + perigee}{2}
a: semi-major axis (m)
mv1r1 = mv2r2 ; v1r1 = v2r2
m: mass of satellite (kg)
v: velocity of satellite (m/s)
r: radius of orbit (m)
v = \sqrt{\frac{2GM}{r}}
v: escape velocity (m/s)
G: gravitational constant (Nm²/kg²)
M: mass of planet (kg)
r: radius of launch (m)
T = \frac{1}{f}
T: period (s)
f: frequency (Hz)
Simple Pendulum: T = 2\pi \sqrt{\frac{L}{g}}
T: period (second (s))
L: length of pendulum (meter (m))
g: gravity (m/s²)
Mass-Spring System: T = 2\pi \sqrt{\frac{m}{k}}
T: period (second (s))
m: mass (kg)
k: spring constant (Newton/meter (N/m))
Physical Pendulum: T = 2\pi \sqrt{\frac{I}{mgd}}
T: period (sec)
I: inertia (kg*m²)
m: mass (kg)
g: gravity (m/s²)
d: distance from pivot to center of mass (m)
Torsional Pendulum: T = 2\pi \sqrt{\frac{I}{k}}
T: period (sec)
I: inertia (kg*m²)
k: torsional constant (kg*m²/s²)
Position as a function of time: x(t) = A \cos{2\pi ft} OR x = x_{max} \cos(\omega t +\varphi)
x(t): position from equilibrium (m)
A: amplitude (m)
f: frequency (Hz)
t: given time (s)
\omega: angular velocity (rad/s)
\varphi: phase angle (radian)
Velocity as a function of time: v(t) = -v_{max} \sin{2\pi ft}
Maximum velocity: v_{max} = 2\pi f A
v_{max}: maximum velocity (m/s)
f: frequency (Hertz (Hz))
A: amplitude (meter (m))
Acceleration as a function of time: a(t) = -a_{max} \cos{2\pi ft}
Maximum acceleration: a_{max} = (2\pi f)^2 A
a_{max}: maximum acceleration (meters/second² (m/s²))
f: frequency (Hertz (Hz))
A: amplitude (meter (m))
a_{max} = -\frac{kA}{m}
In Parallel: k_T = \Sigma k
In Series: \frac{1}{k_T} = \Sigma \frac{1}{k}
Position vs. Time
Axis labels: x (m) vs. t (s)
Slope (Derivative): velocity (m/s)
Velocity vs. Time
Axis labels: v (m/s) vs. t (s)
Slope (Derivative): acceleration (m/s²)
Area (Integral): displacement (m)
Acceleration vs. Time
Axis labels: a (m/s²) vs. t (s)
Area (Integral): change in velocity (m/s)
Drag Force / Weight vs. v_T^2
Axis labels: Force (N) vs. terminal vel.² (m²/s²)
Slope: drag coefficient
Force vs. Distance
Axis labels: F (N) vs. d (m)
Slope: k (N/m) (only if it’s a spring)
Area (Integral): work/energy/\Delta KE/\Delta PE (J)
Kinetic Energy / Work vs. Distance
Axis labels: KE/W (J) vs. d (m)
Slope: force (N)
Potential Energy vs. Distance
Axis labels: PE (J) vs. d (m)
Slope: negative force (N)
\Delta Energy / Work vs. Time
Axis labels: KE/PE/W (J) vs. t (s)
Slope: power (W)
Force vs. Time
Axis labels: F (N) vs. t (s)
Area (Integral): impulse/change in momentum (\Deltap) (kg m/s)
\Delta Momentum / Impulse vs. Time
Axis labels: p / J (kgm/s or Ns) vs. t (s)
Slope: Force (N)
Angular Displacement vs. Time
Axis labels: radians (\Theta) vs. t (s)
Slope: \omega (rad/s)
Angular Velocity vs. Time
Axis labels: \omega (rad/s) vs. t (s)
Slope: \alpha (rad/s²)
Area: \Delta \Theta (radians)
Angular Acceleration vs. Time
Axis labels: \alpha (rad/s²) vs. t (s)
Area: \Delta \omega (radians / second)
KE_R vs. \omega^2
Axis labels: KE_R (J) vs. \omega^2 (rad² / sec²)
Slope: rotational inertia (kg*m²); I = 2 x slope
$$\