Given functions f(t) and g(t) with constants A and B:
Expression:[ \frac{d}{dt}(Af(t) + Bg(t)) = A\frac{df}{dt} + B\frac{dg}{dt} ]
Proof:
Change in f and g:
[ \Delta f = f(t + \Delta t) - f(t) ]
[ \Delta g = g(t + \Delta t) - g(t) ]
Total change in expression:
[ \Delta (Af + Bg) = A \Delta f + B \Delta g ]
Taking the limit as ( \Delta t \to 0 ):
[ \frac{d}{dt}(Af + Bg) = \lim_{\Delta t \to 0} \frac{A\Delta f + B\Delta g}{\Delta t} = A\frac{df}{dt} + B\frac{dg}{dt} ]
For two functions f and g:
Expression:[ \frac{d}{dt}(f \cdot g) = \left(\frac{df}{dt}\right) \cdot g + f \cdot \left(\frac{dg}{dt}\right) ]
Define ( h(t) = f(t)g(t) ):
Change in h:
[ \Delta h = h(t + \Delta t) - h(t) = f(t + \Delta t)g(t + \Delta t) - f(t)