GEN PHYS 1 | Formulas and Solving Tricks

Projectile Motion (WW1)

Solving Tips

  1. Write down the needed components for each the x and y components.

    • Acceleration is always -9.8 m/s² (due to gravity)

    • For projectiles launched horizontally, the initial vertical velocity always 0 m/s.

    • For projectiles launched at an angle,

      • the vertical velocity at the maximum height is 0 m/s and is also considered as the final velocity.

      • the overall airtime can be solved by multiplying the solved time by 2

  2. Time is always the same for both components.

  3. The x-component needs two available components to be solved.

  4. The y-component needs three available components to be solved.

  5. Check which y-component is neither given nor the RTF to decide which formula should be used.

Equations

Horizontal Motion

  • \Delta x=v_{ix}t

Vertical Motion

  • v_{y}=v_{iy}+at | missing ∆y

  • \Delta y=v_{iy}t+\frac12at^2 | missing vy

  • v_{y}^2=v_{iy}^2+2a\Delta y | missing t

Overall Magnitude of Velocity

  • v^2=v_{x}^2+v_{y}^2

  • \theta=\tan^{-1}\left(\frac{v_{y}}{v_{x}}\right)

Launched at an Angle

Note: If overall magnitude of velocity is given

  • v_{y}=v\sin\theta

  • v_{x}=v\cos\theta

  • t_{total}=2\left(\frac{v_{iy}}{9.8}\right)=2\left(\frac{v_{i}\sin\theta}{9.8}\right)

  • h_{\max}=v_{iy}t-\frac12gt^2=\frac{v_{iy}^2}{2g}=\frac{\left(v_{i}\sin\theta\right)^2}{2g}

  • R=\frac{v_{i}^22\sin\theta\cos\theta}{9.8}=\frac{v_{i}^2\left(\sin2\theta\right)}{9.8}

Forces (WW1)

Formulas

  • F=ma

  • F_{x}=F\cos\theta

  • Fy=F\sin\theta

  • F_{net}=\sqrt{\Sigma F_{x}^2+\Sigma F_{y}^2}

  • F_{net}=-F_{eq}

  • f=\mu N | N = normal force

Tips

  • Draw free body diagrams for both the individual components and the overall system when needed.

  • When you need to create an x-axis and y-axis, draw it in such a way it aligns with majority of the forces to minimize calculations.

  • If it provides a force applied, the force and acceleration applies to the whole system.

Work, Energy, and Power (WW2)

Unit Vector

  • A=A_{x}i+A_{y}j+A_{z}k

Dot Product

  • C=\left|A\Vert B\right|\cos\theta

  • C=\left(A_{x}i\right)\left(B_{x}i\right)+\left(A_{y}j\right)\left(B_{y}j\right)+\left(A_{z}k\right)\left(B_{z}k\right)

Properties

  • Commutative: A\cdot B=B\cdot A

  • Distributive: A\left(B+C\right)=A\cdot B+A\cdot C

  • Scalar Product: kA\cdot B=k\left(A\cdot B\right)

Vector Product

  • C=AB\sin\theta

Work

  • W=Fd\cos\theta

  • W=\left|F\right|\cdot\left|d\right|

Kinetic Energy

  • KE=\frac12mv^2

  • W=\Delta KE

Gravitational Potential Energy

  • GPE=mgh

  • W=-\Delta GPE

Elastic Potential Energy

  • EPE=\frac12kx^2

Work-Energy Theorem Proof

Kinetic Energy

W=Fd (assume the angle is equal to 0)

=mad

v_{f}^2=v_{i}^2+2ad

a=\frac{v_{f}^2-v_{i}^2}{2d}

W=md\left(\frac{v_{f}^2-v_{i}^2}{2d}\right)

=m\left(\left(\frac12\right)\left(v_{f}^2-v_{i}^2\right)\right)

W=\frac12mv_{f}^2-\frac12mv_{i}^2

KE=\frac12mv^2

W=KE_{f}-KE_{i}=\Delta KE

Potential Energy

W=Fd

=mgd | mg is equal to the weight

=mg\left(y_{i}-y_{f}\right)

=mgy_{i}-mgy_{f}=-mgy_{f}+mgy_{i}=-\left(mgy_{f}-mgy_{i}\right)

W=-\Delta PE

Law of Conservation of Energy

\Delta KE=-\Delta PE

\frac12mv_{f}^2-\frac12mv_{i}^2=mgy_{i}-mgy_{f}

\frac12mv_{f}^2+mgy_{f}=\frac12mv_{i}^2+mgy_{i}

KE_{f}+PE_{f}=KE_{i}+PE_{i}

Power

Average Power

  • P=\frac{W}{t}

When Force and Velocity are Constant

  • P=Fv\cos\theta=F\cdot v

Instantaneous Power

  • P=\overrightarrow{F}\cdot\overrightarrow{v}

Center of Mass, Momentum, Impulse, and Conservation of Energy

Center of Mass

Mathematical Formula

  • x_{com}=\frac{\Sigma m_{i}x_{i}}{\Sigma m_{i}}

Momentum of a System

  • \overrightarrow{p}_{total}=\Sigma m_{i}v_{i}

Motion of the Center of Mass

  • \overrightarrow{v}_{com}=\frac{\overrightarrow{p}_{total}}{M}

Newton’s 2nd Law

  • \overrightarrow{F}_{net}=M\overrightarrow{a}_{com}

Momentum

  • p=mv

Momentum Derivation Proof

\Sigma F=ma

a=\frac{\Delta v}{\Delta t}

\Sigma F=m\frac{\Delta v}{\Delta t}

\Sigma F= d/dt(m)

\Sigma F= d/dt(mv)

p=mv

\Sigma Fdt=mdv

Impulse

J=\Sigma F\Delta t

Impulse Derivation Proof

\Sigma F= dv/dt(m)

\Sigma Fdt=mdv

\Sigma F\Delta t=m\Delta v

Momentum-Impulse Theorem Proof

\Sigma F\Delta t=m\Delta v

\Sigma F\Delta t=m\left(v_{f}-v_{i}\right)

\Sigma F\Delta t=mv_{f}-mv_{i}

\Sigma F\Delta t=p_{f}-p_{i}

\Sigma F\Delta t=\Delta p

Conservation of Momentum

  • m_1u_1+m_2u_2=m_1v_1+m_2v_2

Elastic Collisions

Conservation of Momentum

  • m_1u_1+m_2u_2=m_1v_1+m_2v_2

Conservation of Kinetic Energy

  • \frac12m_1u_1^2+\frac12m_2u_{^{}2}^2=\frac12m_1v_1^2+\frac12m_2v_2^2

Inelastic Collisions

Conservation of Momentum

  • m_1u_1+m_2u_2=\left(m_1+m_2\right)v_{f}

Coefficient of Restitution

  • e=\frac{u_2-u_1}{v_1-v_2}

Derivative Formula Using Limits (For Time vs Position)

  • \lim_{\Delta t\to0}f\left(x\right)=\frac{f\left(t+\Delta t\right)-f\left(t\right)}{\Delta t}

Shortcut

  1. Multiply each term to the power it is raised to (e.g. Multiply x² by 2).

    • Note: Constants are raised to 0.

  2. Deduct 1 from each term’s exponent.

  3. Remove the original function’s constant term.