Chapter 19 – Cardiovascular System: Heart
19.1 Introduction to the Cardiovascular System
- Cardiovascular system = heart + blood vessels
- Overall mission: transport blood throughout the body
- Delivers \mathrm{O_2} & nutrients
- Removes \mathrm{CO_2} & metabolic wastes
- Key requirement = adequate perfusion
- Perfusion = “mL of blood / minute / gram of tissue”
- Must be high enough to maintain cellular health
- Maintained by continuous heart pumping & patent (open, healthy) vessels
19.1a General Function
- Heart creates pressure gradients that keep blood moving
- Failure anywhere (pump or pipes) ↓ perfusion → cell injury/death
19.1b Overview of Major Components
- Blood vessels = “soft pipes”
- Arteries, veins, capillaries
- The heart
- Hollow, four-chambered pump at system center
- Two functional sides (right & left)
- Chambers = 2 atria (receiving) + 2 ventricles (pumping)
19.1c Pulmonary vs. Systemic Circulation (concept only – diagrams on slides)
- Pulmonary circuit: right heart → lungs (gas exchange) → left heart
- Systemic circuit: left heart → systemic tissues (delivery) → right heart
- Closed loop; outputs must balance
19.3 Heart Anatomy
- Anterior & posterior surfaces show major grooves (sulci) that house coronary vessels
- Apex points left & inferior; base faces posterior-superior
19.3b Heart Wall
- Wall thickness varies
- Ventricles thicker than atria
- Left ventricle thickest (must generate systemic pressure)
- Three distinct layers (superficial → deep)
- Epicardium (visceral pericardium) – serous membrane
- Myocardium – spiral bundles of cardiac muscle; largest layer
- Endocardium – endothelium + areolar CT lining chambers & valves
Internal Anatomy (Fig 19.7)
- Interatrial & interventricular septa separate right vs. left chambers
- Trabeculae carneae = ridges in ventricular walls
- Pectinate muscles = ridges in atrial walls (auricles)
Heart Valves (19.3d–19.3c)
Atrioventricular (AV) Valves
- Right AV = tricuspid
- Left AV = bicuspid / mitral
- Prevent backflow into atria during ventricular systole
- Supported by:
- Papillary muscles (cone-shaped; 3 in right ventricle typically)
- Chordae tendineae (collagen cords) – prevent valve inversion
Semilunar (SL) Valves
- Pulmonary SL (right ventricle → pulmonary trunk)
- Aortic SL (left ventricle → aorta)
- Open when ventricular P > arterial P; close when ventricles relax
- Closure catches “back-sliding” blood, producing S₂ (“dupp”)
Valve Pathology (Clinical View: Heart Murmurs)
- Valvular insufficiency = cusps don’t seal → regurgitation & chamber enlargement
- Valvular stenosis = scarred, narrowed cusps → high resistance, ↓ output
- Murmur = auscultated turbulence; may reflect either defect
Fibrous Skeleton (19.3e)
- Dense irregular CT; forms fibrous rings around valves
- Provides:
- Structural support
- Anchor point for myocardium
- Electrical insulation between atria & ventricles (ensures sequential contraction)
- Spiral muscle arrangement → atrial squeeze “inward”; ventricular contraction “wrings” apex → base
Coronary Circulation (19.3f)
- Purpose: supply myocardium, which is too thick for diffusion
- Arteries (Fig 19.11a) branch off ascending aorta:
- Right coronary → marginal & posterior interventricular branches
- Left coronary → circumflex & anterior interventricular (LAD) branches
- Veins (Fig 19.11b) drain into coronary sinus → right atrium
- Flow is intermittent: vessels patent in diastole; compressed in systole
- Functional end-arteries: anastomoses exist but too small to fully compensate occlusion
Clinical: CHD, Angina, MI
- Atherosclerosis or spasm ↓ flow
- Angina pectoris: transient ischemic pain; treat with vasodilators
- Myocardial infarction: complete occlusion → cell death
- Severe chest pain ± left arm/jaw, dyspnea, diaphoresis, nausea
Cell Structure
- Short, branched cells; 1–2 central nuclei; abundant mitochondria
- Intercalated discs:
- Desmosomes = mechanical coupling
- Gap junctions = ionic/electrical coupling → functional syncytium
- High ATP demand; rich blood supply, myoglobin, creatine kinase
- Utilizes multiple fuels (fatty acids, glucose, lactate, ketones, AAs)
- Relies almost exclusively on aerobic respiration → sensitive to ischemia
19.5 Conduction System & ANS Control
Conduction Pathway
- SA node (posterior wall RA) – pacemaker
- Internodal pathways & AV node (interatrial septum)
- AV bundle (Bundle of His) → right & left bundle branches
- Purkinje fibers (apex → ventricular walls)
Automaticity
- SA nodal cells spontaneously depolarize (pacemaker potential)
- RMP ≈ -60\,\text{mV} but unstable
- Fires every 0.8\,\text{s} → \approx 75\,\text{bpm}
- Intrinsic rate \approx 100\,\text{bpm}; parasympathetic vagal tone slows resting HR
ANS Innervation (Fig 19.13)
- Cardiac centers in medulla:
- Cardioacceleratory (sympathetic) ↑ HR & force
- Cardioinhibitory (parasympathetic via vagus) ↓ HR
- Inputs from baro- & chemoreceptors modulate output
Ectopic Pacemakers
- Non-SA foci can pace when SA damaged
- AV node rhythm: 40–50 bpm (life-sustaining)
- Ventricular focus: 20–40 bpm (usually insufficient)
19.6–19.7 Electrical & Mechanical Events in the Heart
SA Node Action Potential
- Slow Na⁺ influx (funny channels) → threshold
- Rapid Ca²⁺ influx → depolarization
- K⁺ efflux → repolarization; cycle repeats
Conduction to Ventricles (Fig 19.17)
- Rapid spread via Purkinje fibers ensures synchronous ventricular systole
- Papillary muscle stimulation slightly precedes pressure rise → stabilizes AV cusps
Cardiac Muscle Cell Action Potential
- Depolarization: Na⁺ influx
- Plateau: Ca²⁺ influx balanced by K⁺ efflux (maintains depolarization, prolongs refractory period ≈ 250\,\text{ms})
- Repolarization: Ca²⁺ channels close; K⁺ continues outward
- Long refractory period prevents tetany
ECG (19.7d)
- P wave = atrial depolarization
- QRS complex = ventricular depolarization (& atrial repolarization)
- T wave = ventricular repolarization
- PR, QT, ST segments/intervals give conduction & repolarization timing
Arrhythmias (Clinical View)
- Heart blocks (1°, 2°, 3°) = slowed/failed AV conduction
- PVCs – premature ventricular contractions; benign if isolated
- Atrial fibrillation – chaotic atrial activity
- Ventricular fibrillation – fatal pump failure; treat with defibrillation
19.8 Cardiac Cycle
- One heartbeat = coordinated systole & diastole of all chambers
- Pressure changes drive valve operation & blood flow (high → low)
Sequence of Events
- Atrial systole: completes ventricular filling; EDV reached
- Isovolumic ventricular contraction: AV valves close (S₁ “lubb”); pressure rises, SL valves still shut
- Ventricular ejection: pressure > arterial; SL open; blood leaves; SV ejected, ESV = EDV - SV
- Isovolumic relaxation: ventricles relax; SL close (S₂ “dupp”); all valves closed
- Ventricular filling (passive): atria & ventricles in diastole; AV valves open; cycle repeats
Heart Sounds & Murmurs
- S₁ = AV closure, S₂ = SL closure; S₃, S₄ useful in pathology
- Murmurs reflect turbulence (insufficiency vs. stenosis)
Ventricular Balance
- Both ventricles pump equal volumes; mismatch → systemic or pulmonary edema
19.9 Cardiac Output (CO)
- CO = HR \times SV (L min^{-1}) – measure of CV performance
- Cardiac reserve = max CO – resting CO (↑ 4× in non-athlete, 7× in athlete)
Heart Rate Modulation (Chronotropic Agents)
- Positive agents: sympathetic NE/EPI, TH, caffeine, nicotine ↑ HR
- Negative agents: parasymp ACh, beta-blockers ↓ HR
- Reflexes:
- Baroreceptor input adjusts HR to BP
- Bainbridge (atrial) reflex: ↑ venous return stretches atria → ↑ HR
Stroke Volume Determinants
- Venous return / preload
- Frank-Starling Law: ↑ EDV → optimal filament overlap → ↑ force → ↑ SV
- ↑ with exercise (muscle pump) or slower HR; ↓ with hemorrhage, tachycardia
- Inotropic state (contractility)
- Positive agents (sympathetic NE/EPI, digitalis) ↑ Ca²⁺ → ↑ cross-bridges → ↑ SV
- Negative agents (acidosis, hyperkalemia, Ca²⁺ channel blockers) ↓ SV
- Afterload
- Arterial pressure that ventricles must overcome
- ↑ afterload (e.g., hypertension, aortic stenosis) ↓ SV
Overall CO Control
- HR influenced primarily by nodal activity & ANS/hormonal status
- SV influenced by preload, contractility, afterload
- Clinical extremes:
- Bradycardia < 60 bpm (athletes, hypothyroid, electrolyte imbalance, CHF)
- Tachycardia > 100 bpm (fever, anxiety, heart disease)
19.10 Heart Development
- Begins wk 3: two endothelial heart tubes (mesoderm) form & fuse
- Beats by day 22; folds & bends during wk 4 to form primitive chambers
- Key fetal shunt: foramen ovale (RA → LA); closes post-birth → fossa ovalis