Nonmetallic Elements and Their Compounds Notes

Nonmetallic Elements and Their Compounds

Hydrogen Production

  • Hydrogen can be produced through various reactions:
    • Steam reforming of propane: C3H8 (g) + 3H2O (g) \rightarrow 3CO (g) + 7H2 (g)
    • Reaction of carbon with steam: C (s) + H2O (g) \rightarrow CO (g) + H2 (g)
    • Reaction of zinc with hydrochloric acid: Zn (s) + 2HCl (aq) \rightarrow ZnCl2 (aq) + H2 (g)

Binary Hydrides of Representative Elements

  • Binary hydrides can be classified based on their structure and bonding:
    • Discrete molecular units (e.g., CH4, NH3, H_2O, HF)
    • Polymeric structure: covalent compounds (e.g., (BeH2)n)
    • Ionic compounds (e.g., LiH, NaH, KH, CaH_2)

Isotopes of Hydrogen

  • Hydrogen has three isotopes: protium (^1H), deuterium (^2H or D), and tritium (^3H or T).
  • Kinetic Isotope Effect
    • Illustrates the difference in reaction rates due to isotopic substitution.
    • Example:
      • CH3COOH (aq) \rightleftharpoons CH3COO^- (aq) + H^+ (aq), K_a = 1.8 \times 10^{-5}
      • CH3COOD (aq) \rightleftharpoons CH3COO^- (aq) + D^+ (aq), K_a = 6 \times 10^{-6}

Hydrogenation

  • Hydrogenation is the addition of hydrogen to compounds containing multiple bonds.
  • Example: C=C + H2 \rightarrow H-C-C-H (requires a catalyst such as Pt on Al2O_3).

The Hydrogen Economy

  • Hydrogen as a fuel:
    • 2H2 (g) + O2 (g) \rightarrow 2H_2O (l)
  • Fuel values of common fuels (kJ/g):
    • Wood (pine): 18
    • Coal: 31
    • Crude oil: 45
    • Gasoline: 48
    • Natural gas: 49
    • Hydrogen: 142

Metallic Hydrogen

  • Metallic hydrogen exists under extreme pressure, such as in the interior of Jupiter.
  • Jupiter's interior composition includes:
    • Insulating molecular hydrogen
    • Metallic molecular hydrogen
    • Metallic atomic hydrogen
    • Rock core

Phase Diagram of Carbon

  • Carbon exists in different phases depending on pressure (P) and temperature (t).
    • Diamond: High pressure phase.
    • Graphite: Stable at lower pressures.
    • Vapor and Liquid phases.
  • At 3300 °C and 2 \times 10^4 atm, carbon can be in liquid phase.
  • C (diamond) \rightarrow C (graphite), \Delta G^o = -2.87 kJ

Synthetic Gas from Coal

  • Coal can be converted to synthetic gas through several reactions:
    • C (s) + H2O (g) \rightarrow CO (g) + H2 (g)
    • C (s) + 2H2 (g) \rightarrow CH4 (g)
    • CO (g) + 2H2 (g) \rightarrow CH3OH (l)

Common Compounds of Nitrogen

  • Table of nitrogen compounds with different oxidation numbers, formulas, and structures:
    • Ammonia (NH_3): -3 oxidation number
    • Hydrazine (N2H4): -2 oxidation number
    • Hydroxylamine (NH_2OH): -1 oxidation number
    • Nitrogen (dinitrogen) (N_2): 0 oxidation number
    • Nitrous oxide (N_2O): +1 oxidation number
    • Nitric oxide (NO): +2 oxidation number
    • Nitrous acid (HNO_2): +3 oxidation number
    • Nitrogen dioxide (NO_2): +4 oxidation number
    • Nitric acid (HNO_3): +5 oxidation number

Production of Phosphorus

  • Phosphorus is produced from calcium phosphate:
    • 2Ca3(PO4)2 (s) + 10C (s) + 6SiO2 (s) \rightarrow 6CaSiO3 (s) + 10CO (g) + P4 (s)
  • White phosphorus can be converted to red phosphorus:
    • nP4 \text{ (white phosphorus)} \xrightarrow{3000 \degree C} (P4)_n \text{ (red phosphorus)}
  • Reaction of phosphorus with oxygen:
    • P4 (s) + 5O2 (g) \rightarrow P4O{10} (s)

Oxides of Phosphorus

  • Phosphorus forms two common oxides: P4O6 and P4O{10}.

Common Phosphorus-Containing Oxoacids

  • Phosphorous acid (H3PO3) structure.
  • Hypophosphorous acid (H3PO2) structure.
  • Phosphoric acid (H3PO4) structure.
  • Triphosphoric acid (H5P3O_{10}) structure.

Ammonium Nitrate – The Explosive Fertilizer

  • Ammonium nitrate can decompose explosively:
    • NH4NO3 (g) \rightarrow N2O (g) + 2H2O (g) \text{ at } T > 250 \degree C
    • 2NH4NO3 (g) \rightarrow 2N2 (g) + 4H2O (g) + O_2 (g) \text{ at } T > 300 \degree C

Oxides

  • Oxides can be:
    • Basic oxides
    • Amphoteric oxides
    • Acidic oxides
  • Oxide ion: O^{2-}
  • Peroxide ion: O_2^{2-}
  • Superoxide ion: O_2^{-}
  • Reactions of superoxide and peroxide ions in water:
    • O2^- (aq) + H2O (l) \rightarrow HO_2 (aq) + OH^- (aq)
    • O2^{2-} (aq) + 2H2O (l) \rightarrow O_2 (g) + 4OH^- (aq)
    • 4O2^- (aq) + 2H2O (l) \rightarrow 3O_2 (g) + 4OH^- (aq)

Ozone

  • Ozone formation: 3O2 (g) \rightleftharpoons 2O3 (g), \Delta G^0 = 326.8 kJ
  • Ozone is a powerful oxidizing agent.
  • Ozone can be produced by electrical discharge.

Frasch Process

  • The Frasch process is used to extract sulfur.
    • Involves using compressed air and superheated water to melt and extract sulfur from underground deposits.

Common Compounds of Sulfur

  • Table of sulfur compounds with different oxidation numbers, formulas, and structures:
    • Hydrogen sulfide (H_2S): -2 oxidation number
    • Sulfur (S_8): 0 oxidation number
    • Disulfur dichloride (S2Cl2): +1 oxidation number
    • Sulfur dichloride (SCl_2): +2 oxidation number
    • Sulfur dioxide (SO_2): +4 oxidation number
    • Sulfur trioxide (SO_3): +6 oxidation number

Properties of the Halogens

  • Table summarizing properties of halogens (F, Cl, Br, I):
    • Valence electron configuration:
      • F: 2s^22p^5
      • Cl: 3s^23p^5
      • Br: 4s^24p^5
      • I: 5s^25p^5
    • Melting and boiling points.
    • Appearance.
    • Atomic and ionic radii.
    • Ionization energy.
    • Electronegativity.
    • Standard reduction potential.
    • Bond enthalpy.

Electrolytic Production of Fluorine

  • Fluorine is produced by electrolysis:
    • 2F^- \rightarrow F_2 (g) + 2e^-
    • 2H^+ + 2e^- \rightarrow H_2 (g)
    • Overall: 2HF \rightarrow H2 (g) + F2 (g)

Laboratory Production of Chlorine Gas

  • Chlorine gas can be produced in the laboratory by reacting manganese dioxide with hydrochloric acid:
    • MnO2 (s) + 2H2SO4 (aq) + 2NaCl (aq) \rightarrow MnSO4 (aq) + Na2SO4 (aq) + 2H2O (l) + Cl2 (g)

Chlorine Production by the Chlor-Alkali Process

  • Chlorine is produced by electrolysis of sodium chloride solution:
    • 2Cl^- (aq) \rightarrow Cl_2 (g) + 2e^-
    • 2Na^+ (aq) + 2e^- \rightarrow 2Na/Hg
    • 2NaCl (aq) \rightarrow 2Na/Hg (g) + Cl_2 (g)

Common Compounds of Halogens

  • Table of common halogen compounds:
    • Hydrogen halides (HF, HCl, HBr, HI)
    • Oxides (e.g., Cl2O, ClO2, Cl2O7, I2O5)
    • Oxoacids (e.g., HClO, HClO2, HClO3, HClO4, HIO3, H5IO6)