Organic Chemistry – Halogen Derivatives, Alcohols, Carbonyls & Amines
Halogen Derivatives
Introduction & General Reactions
Alkane halogenation: \text{R–H}+X_2 \rightarrow \text{R–X}+\text{HX}
Arene halogenation: \text{Ar–H}+X_2 \rightarrow \text{Ar–X}+\text{HX}
“Easy trick” (mnemonic) mentioned for quick recall.
Two–Way Classification
By hydrocarbon skeleton
Haloalkanes \text{R–X}
Haloalkenes (\text{CH}2{=}CH2\text{–Cl})
Haloalkynes (\text{–C}\equiv \text{C–X})
Haloarenes (Ar–X)
By number of halogens
Mono-, di-, tri-halogen compounds (formulas and skeletal examples shown).
Detailed Sub-Classification of Monohalides
Alkyl (haloalkane): X on sp^3 C of an alkyl chain.
Allylic: X on sp^3 C next to C=C: C{=}C–C–X
Benzylic: X on sp^3 C directly bonded to aromatic ring: \text{Ph–CH}_2\text{–X}
Vinylic: X on sp^2 C of a C=C: CH_2{=}CH–X
Halo-alkynes: X on sp C of C\equiv C chain.
Aryl: X directly on aromatic sp^2 C.
IUPAC Nomenclature Table
Exhaustive list of 14 common→IUPAC conversions given (CH$_3$Cl → chloromethane; vinyl chloride → 1-chloroethene; etc.).
Remember to number so halogen gets lowest locant; multiple halogens → di/tri prefixes.
Preparations of Alkyl Halides
From alcohols
HX + anhy \text{ZnCl}2 (Lucas conditions) \text{R–OH}+HX \xrightarrow[\text{anhy ZnCl}2]{} \text{R–X}+H_2O
NaBr/H$2$SO$4$ or NaI/H$3$PO$4$ supply HBr/HI in situ.
Phosphorus halides: 3\text{R–OH}+PCl3 \rightarrow 3\text{R–Cl}+H3PO3 (similarly PCl5).
Thionyl chloride (best): \text{R–OH}+SOCl2 \rightarrow \text{R–Cl}+SO2\uparrow +HCl\uparrow
From alkenes/alkynes
Markovnikov addition of HX; anti-Markovnikov in presence of peroxide (Kharasch effect).
Halogen exchange
Finkelstein: \text{R–Cl}+NaI \rightarrow \text{R–I}+NaCl (acetone).
Swarts: \text{R–Cl}+AgF \rightarrow \text{R–F}+AgCl.
Electrophilic substitution on aromatic ring (Fe / dark).
Sandmeyer: diazonium salt + CuX → aryl-X.
Stereochemical Concepts
Chiral carbon = C with 4 different substituents.
Plane-polarised light, optical activity, dextro (+) vs laevo (–).
Enantiomers = non-superimposable mirror images; racemic mixture = 1:1 dl.
Substitution Mechanisms
\text{S}_\text{N}1 (unimolecular): carbocation intermediate; rate =k[\text{R–X}].
\text{S}_\text{N}2 (bimolecular, backside attack): single transition state; rate =k[\text{R–X}][Nu^-].
Characteristic Laboratory Test
\text{R–X}+OH^- \rightarrow \text{R–OH}+X^- followed by Ag^+ +X^- \rightarrow AgX \downarrow (white Cl, pale-yellow Br, yellow I).
Comprehensive Nucleophilic Substitutions
NaOH{(aq)} → alcohols; NaOR → ethers; RCOOAg → esters; alc NH3 → amines; alc KCN → nitriles; alc AgCN → isocyanides; KNO2 vs AgNO2 give alkyl nitrites vs nitroalkanes, etc.
Elimination (dehydrohalogenation)
\text{R–CHX–CH}3\xrightarrow[\text{alc}]\text{KOH} \text{R–CH=}CH2 (Saytzeff orientation).
Metal Coupling
Grignard (R–Mg–X) formation; Wurtz 2\text{R–X}+2Na → \text{R–R}; Wurtz–Fittig, Fittig for aryl/alkyl couplings.
Special Reactivity of Haloarenes
Nucleophilic substitution facilitated by –NO_2 at o/p (elimination–addition, \text{Ar–Cl} \rightarrow \text{Ar–OH}).
Electrophilic substitution: halogenation, nitration, sulphonation, Friedel–Crafts on ring.
Important Polyhalogen Compounds – Uses & Hazards
Dichloromethane – solvent/propellant; CNS depression, corneal damage.
Chloroform – solvent, \mathit{CHCl3\xrightarrow{base}} :CCl2 source; hepatotoxic.
Carbon tetrachloride – cleaning; liver toxin, greenhouse gas.
Iodoform – antiseptic; skin/eye/respiratory irritant.
Freons (CFCs) – refrigerants; ozone depletion, asphyxiant.
DDT – insecticide; bio-persistent pollutant, tremors at high dose.
Alcohols, Phenols & Ethers
Definitions
Alcohols: \text{R–OH} on saturated C.
Phenols: \text{Ar–OH} on benzene ring.
Ethers: \text{R–O–R'},\;\text{Ar–O–Ar'},\;\text{R–O–Ar}.
Classification
Mono-, di-, tri-hydric (1, 2, 3 –OH).
sp^3 vs sp^2 C–O bonds: alkyl, allylic, benzylic, vinylic alcohols.
Ethers: symmetrical vs mixed.
Nomenclature Highlights
Alcohols: butan-2-ol, 2-methyl-propan-2-ol, glycerol (propane-1,2,3-triol), crotyl alcohol (but-2-en-1-ol).
Phenols: catechol (1,2-diol), resorcinol (1,3-diol), hydroquinone (1,4-diol), etc.
Ethers: methoxyethane, anisole (methoxybenzene), 1-propoxybenzene.
Preparations of Alcohols
From alkyl halides (aq NaOH).
Acid-catalysed hydration of alkenes (Markovnikov).
Hydroboration–oxidation (anti-Markovnikov).
Reduction of carbonyls
Aldehyde \rightarrow 1^\circ alcohol, ketone \rightarrow 2^\circ alcohol via LiAlH4 or H2/Pd.
Acids \xrightarrow{LiAlH_4} alcohols.
Grignard on \mathrm{H_2CO}, aldehyde, ketone gives 1^\circ, 2^\circ, 3^\circ alcohols respectively.
Preparations of Phenol
Dow (chlorobenzene + NaOH_{(aq,150\,atm,623 K)}).
Cumene process (cumene → cumene hydroperoxide → phenol + acetone).
From benzene sulphonic acid, from aniline via diazonium salt.
Physical Properties
Extensive H-bonding → higher b.p.; low-MW alcohols/phenols water-soluble.
Chemical Tests
Neutral to litmus; phenols + FeCl3 → coloured complex; Lucas test (conc HCl + ZnCl2): 3^\circ>2^\circ>1^\circ cloudiness.
Reactivity via O–H Bond
Acidity order: phenol > water > alcohol.
Esterification with acids, anhydrides, acyl chlorides (pyridine).
Aspirin synthesis: salicylic acid + acetic anhydride.
Reactivity via C–O Bond (Alcohols)
ROH+HX \rightarrow RX (ZnCl$2$, PCl3/PCl5, SOCl2).
Dehydration to alkenes (acid, heat).
Oxidation: 1^\circ → aldehyde / acid; 2^\circ → ketone; 3^\circ – no oxidation, dehydrated by Cu/573 K.
Reactions of Phenol
Halogenation: in H2O → 2,4,6-tribromophenol; in CS$2$ (low T) → o/p-bromophenol.
Nitration: dilute HNO_3 gives o/p; conc → picric acid.
Sulphonation (temperature-controlled ortho ↔ para).
Reimer–Tiemann (CHO at ortho).
Kolbe (Salicylic acid).
Catalytic hydrogenation → cyclohexanol; Zn dust → benzene.
Ethers
Dehydration of alcohols (413 K) → symmetrical ether; 443 K → alkene.
Williamson synthesis R–X+R'O^-Na^+ \rightarrow R–O–R' (works except hindered 3^\circ halide).
Lab test: reacts with cold conc H2SO4 to give oxonium salt.
Slow auto-oxidation → peroxides.
Cleavage by hot HI: R–O–R' + HI \rightarrow R–I + R'–OH (anisole yields phenol + MeI).
Aromatic ether electrophilic substitutions: anisole directs o/p.
Uses
Methanol – solvent, fuel.
Ethanol – beverages, antifreeze.
Phenol – Bakelite resin, antiseptic.
Diethyl ether – historical anaesthetic, solvent for Grignard.
Aldehydes, Ketones & Carboxylic Acids
Key Functional Groups
Aldehyde: –CHO, at least one H on carbonyl C.
Ketone: >C{=}O with two C groups.
Acid: –COOH (carbonyl + hydroxyl).
Classifications
Aliphatic vs aromatic for each family; ketones further into symmetrical / unsym.
Nomenclature Essentials
Comprehensive tables provided (formaldehyde = methanal; acetone = propanone; phthalaldehyde = benzene-1,2-dicarbaldehyde; etc.).
Preparations (General)
Oxidation of alcohols: PCC (mild) or Cu/573 K.
Ozonolysis of alkenes, hydration of alkynes (Hg$^{2+}$/H$2$SO$4$).
Rosenmund (acid chloride → aldehyde, Pd/BaSO_4).
Acyl chloride + dialkylcadmium → ketone.
Stephen reduction (nitrile → imine → aldehyde).
Grignard on nitrile → ketone.
Etard oxidation, benzylic side-chain oxidation / chlorination for benzaldehyde.
Friedel–Craft acylation → aromatic ketone.
Esters + \text{DIBAL-H} → aldehyde (only).
Carboxylic acids from nitriles, acyl chlorides, anhydrides, esters, alkyl-benzene oxidation, KMnO$4$ of alkenes, Grignard + CO$2$.
Qualitative Tests
Aldehydes: Schiff (magenta), Tollens (Ag mirror), Fehling (red Cu$_2$O).
Ketones: sodium-nitroprusside → red colour.
Important Nucleophilic Additions
HCN → cyanohydrin; NaHSO_3 → bisulfite adduct; alcohols (dry HCl) → hemi-/acetals, ketals; Grignard → alcohols.
Addition–elimination with NH_2Y reagents gives imines/oximes, hydrazones, phenylhydrazones, semicarbazones, 2,4-DNPH derivative (bright orange ppt).
Haloform: methyl ketone + I2/NaOH → CHI3\downarrow.
Aldol (self & cross) requires \alpha-H aldehydes/ketones → \beta-hydroxy carbonyl, dehydration to \alpha,\beta-unsat carbonyl.
Cannizzaro: aldehydes without \alpha-H under conc alkali → one reduced (alcohol) + one oxidised (acid).
Redox Conversions
Strong oxidants convert aldehydes → acids; ketones resistant but severed by hot KMnO$_4$.
Clemmensen (Zn–Hg/HCl) & Wolff–Kishner (NH$2$NH$2$/base/heat) reduce C=O → CH$_2$.
Electrophilic Substitution on Aromatic Carbonyls
–CHO is meta-directing: nitration gives m-nitrobenzaldehyde.
Carboxylic Acid Chemistry
Litmus red, NaHCO3 effervescence (CO2), esterification with alcohols (fruity odour).
Conversion to acyl chloride (SOCl2, PCl3, PCl5); to amide (via ammonium salt or acyl chloride + NH$3$).
P$2$O$5$ dehydration of two acids → anhydride.
Decarboxylation of sodium salts with NaOH/CaO: CH3COONa \xrightarrow{\Delta} CH4.
LiAlH_4 reduction → primary alcohol.
Amines & Diazonium Salts
Structural Types
Primary 1^\circ \text{R–NH}2, secondary 2^\circ \text{R}2\text{NH}, tertiary 3^\circ \text{R}_3\text{N}.
Further: symmetrical vs mixed; aliphatic vs aromatic.
IUPAC / Common Naming
Detailed table (methylamine = methanamine, aniline = benzenamine, p-toluidine = 4-methylbenzenamine, trimethylamine = N,N-dimethyl-methanamine, etc.).
Preparations
Ammonolysis of alkyl halide (excess NH$_3$ for 1^\circ).
Reduction of nitro compounds (Sn/HCl or H_2/Pd).
Mendius: nitrile +4[H] \rightarrow amine (Na/EtOH or LiAlH_4).
Reduction of amides → amines.
Gabriel (phthalimide + alkyl halide, followed by hydrolysis) ⇒ pure 1^\circ.
Hofmann degradation: amide + Br$_2$/KOH ⇒ 1^\circ amine with one C less.
Basicity Trends
pKb order: R2NH > RNH2 > R3N > NH_3 in gas phase; in water, hydration changes order but 2^\circ often strongest.
Aromatic amines less basic due to resonance.
Key Reactions & Tests
Acid-base: turns red litmus blue.
Diazotisation (primary aromatic): ArNH2 + NaNO2/HCl/273\,K \rightarrow ArN_2^+Cl^- (gives orange azo dye with \beta-naphthol).
Alkylation (exhaustive) → quaternary ammonium iodide → Hofmann elimination \rightarrow least substituted alkene.
Acylation (Schotten–Baumann): RNH_2+R'COCl \rightarrow RNHCOR'.
Carbylamine: RNH2+CHCl3+3KOH \rightarrow RNC +3KCl+3H_2O (foul odour, lab test for 1^\circ amine).
HNO_2:
1^\circ aliphatic → alcohol, N_2.
2^\circ → nitrosoamine (yellow oil).
3^\circ → no diazonium, but forms nitrite salt.
Aryl Diazonium Reactions
Sandmeyer: ArN_2^+Cl^- + CuCl \rightarrow ArCl (CuBr, CuCN analogues).
Gattermann: same but Cu powder + HX.
KI → ArI; HBF_4/heat → ArF (Schiemann).
H3PO2 reduces to Ar–H.
Water (warm) → phenol.
Coupling with phenol/aniline → azo dyes (p-hydroxy/p-amino-azobenzene).
Hinsberg test: 1^\circ/2^\circ/3^\circ amines discrimination via benzenesulphonyl chloride.
Electrophilic Substitution on Aniline
Direct bromination in water → 2,4,6-tribromoaniline.
Controlled bromination/nitration possible via acetanilide protection.
Sulphonation gives p-sulphonamide.