EXAM FLASHCARDS (BUS VERSION) 🔴 PDC (these are BIG) Q: What does PDC do? A: Pyruvate (3C) → acetyl-CoA (2C) + CO₂ + NADH ⸻ Q: PDC Step 1 A: Decarboxylation of pyruvate to an aldehyde (TPP, E1) ⸻ Q: PDC Step 2 A: Oxidation of aldehyde to carboxylic acid (lipoamide, E2) ⸻ Q: PDC Step 3 A: Formation of acetyl-CoA (transfer to CoA-SH) ⸻ Q: PDC Step 4 A: Reoxidation of lipoamide (FAD → FADH₂) ⸻ Q: PDC Step 5 A: Regeneration of FAD via NAD⁺ → NADH ⸻ Q: PDC inhibitors A: ATP, NADH, acetyl-CoA, fatty acids ⸻ Q: PDC activators A: AMP, CoA, NAD⁺, Ca²⁺ ⸻ 🟠 CAC CORE Q: CAC net products (per acetyl-CoA) A: 2 CO₂, 3 NADH, 1 FADH₂, 1 GTP ⸻ Q: CAC intermediates (order) A: Citrate → Isocitrate → α-KG → Succinyl-CoA → Succinate → Fumarate → Malate → OAA ⸻ Q: CAC enzymes that release CO₂ A: Isocitrate dehydrogenase, α-KG dehydrogenase ⸻ Q: Rate-limiting CAC enzyme A: Isocitrate dehydrogenase ⸻ Q: CAC regulatory enzymes A: Citrate synthase, Isocitrate DH, α-KG DH ⸻ Q: CAC activated by A: ADP, Ca²⁺ ⸻ Q: CAC inhibited by A: ATP, NADH, citrate, succinyl-CoA ⸻ Q: CAC enzyme in ETC A: Succinate dehydrogenase (inner mitochondrial membrane) ⸻ 🟡 NET vs INTERMEDIATE (this prevents mistakes) Q: Is oxaloacetate a net CAC product? A: No — regenerated ⸻ Q: Is citrate a net CAC product? A: No — intermediate ⸻ Q: Why does CAC stop without O₂? A: NADH builds up → NAD⁺ depleted ⸻ 🔵 CARBON LABELING (glycolysis) Q: Glucose C1 & C6 → pyruvate? A: C3 (methyl carbon) ⸻ Q: Glucose C2 & C5 → pyruvate? A: C2 (central carbon) ⸻ Q: Glucose C3 & C4 → pyruvate? A: C1 (carboxylate) ⸻ 🟢 GLYCOGEN (VERY LIGHT) Q: Glycogen phosphorylase product A: Glucose-1-phosphate ⸻ Q: Glycogenesis vs gluconeogenesis A: Glycogenesis = glycogen synthesis Gluconeogenesis = glucose synthesis ⸻ 🟣 PPP (recognition only) Q: PPP purpose A: NADPH + ribose-5-phosphate ⸻ Q: PPP regulation A: NADPH inhibits G6P dehydrogenase

EXAM FLASHCARDS (BUS VERSION)

🔴 PDC (these are BIG)

Q: What does PDC do?

A: Pyruvate (3C) → acetyl-CoA (2C) + CO₂ + NADH

Q: PDC Step 1

A: Decarboxylation of pyruvate to an aldehyde (TPP, E1)

Q: PDC Step 2

A: Oxidation of aldehyde to carboxylic acid (lipoamide, E2)

Q: PDC Step 3

A: Formation of acetyl-CoA (transfer to CoA-SH)

Q: PDC Step 4

A: Reoxidation of lipoamide (FAD → FADH₂)

Q: PDC Step 5

A: Regeneration of FAD via NAD⁺ → NADH

Q: PDC inhibitors

A: ATP, NADH, acetyl-CoA, fatty acids

Q: PDC activators

A: AMP, CoA, NAD⁺, Ca²⁺

🟠 CAC CORE

Q: CAC net products (per acetyl-CoA)

A: 2 CO₂, 3 NADH, 1 FADH₂, 1 GTP

Q: CAC intermediates (order)

A: Citrate → Isocitrate → α-KG → Succinyl-CoA → Succinate → Fumarate → Malate → OAA

Q: CAC enzymes that release CO₂

A: Isocitrate dehydrogenase, α-KG dehydrogenase

Q: Rate-limiting CAC enzyme

A: Isocitrate dehydrogenase

Q: CAC regulatory enzymes

A: Citrate synthase, Isocitrate DH, α-KG DH

Q: CAC activated by

A: ADP, Ca²⁺

Q: CAC inhibited by

A: ATP, NADH, citrate, succinyl-CoA

Q: CAC enzyme in ETC

A: Succinate dehydrogenase (inner mitochondrial membrane)

🟡 NET vs INTERMEDIATE (this prevents mistakes)

Q: Is oxaloacetate a net CAC product?

A: No — regenerated

Q: Is citrate a net CAC product?

A: No — intermediate

Q: Why does CAC stop without O₂?

A: NADH builds up → NAD⁺ depleted

🔵 CARBON LABELING (glycolysis)

Q: Glucose C1 & C6 → pyruvate?

A: C3 (methyl carbon)

Q: Glucose C2 & C5 → pyruvate?

A: C2 (central carbon)

Q: Glucose C3 & C4 → pyruvate?

A: C1 (carboxylate)

🟢 GLYCOGEN (VERY LIGHT)

Q: Glycogen phosphorylase product

A: Glucose-1-phosphate

Q: Glycogenesis vs gluconeogenesis

A: Glycogenesis = glycogen synthesis

Gluconeogenesis = glucose synthesis

🟣 PPP (recognition only)

Q: PPP purpose

A: NADPH + ribose-5-phosphate

Q: PPP regulation

A: NADPH inhibits G6P dehydrogenase