Chapter 15: Entropy and Free Energy
Chapter 15: Entropy and Free Energy
Gibbs Free Energy
Second Law of Thermodynamics: A process is spontaneous if
DS{univ} = DS{syst} + DS_{surr} > 0To analyze spontaneity based solely on the system:
- DS{surr} = - \frac{\Delta H{system}}{T}
- Combine to get:
DS{universe} = DS{system} + [- \frac{\Delta H_{system}}{T}] > 0 - Therefore,
T \cdot DS{universe} = T \cdot DS{system} - \Delta H_{system} > 0 - Rearranged gives:
-T \cdot DS{universe} = \Delta H{system} - T \cdot DS_{system} < 0
Gibbs Free Energy (G) defined as:
G = \Delta H - T \cdot DS- Units of G: kJ mol−1
- At constant T and P:
- Process is spontaneous only if
\Delta G < 0
- \Delta G < 0 → spontaneous forwards
- \Delta G > 0 → NOT spontaneous forwards
- \Delta G = 0 → equilibrium
Cases for Gibbs Free Energy
Case 1:
- \Delta H < 0 (exothermic) and DS > 0 (increase in entropy)
- \Delta G = \Delta H - T \cdot DS = (-) - T (+) < 0
- Always spontaneous (e.g., building collapsing into pile of bricks)
Case 2:
- \Delta H > 0 (endothermic) and DS < 0 (decrease in entropy)
- \Delta G = \Delta H - T \cdot DS = (+) - T (-) > 0
- Never spontaneous (e.g., pile of bricks assembling into a building)
Case 3:
- \Delta H > 0 and DS > 0
- \Delta G = \Delta H - T \cdot DS = (+) - T(+) < 0
- Spontaneous at high T (e.g., ice melting; water evaporating)
Case 4:
- \Delta H < 0 and DS < 0
- \Delta G = \Delta H - T \cdot DS = (-) - T (-) < 0
- Spontaneous at low T (e.g., water freezing; water vapor condensing)
Gibbs Free Energy Table
- Summary of Cases:
| DH | DS | DG | Spontaneity |
|---|---|---|---|
| + | + | < 0 at high T | Spontaneous always |
| - | > 0 always | Never spontaneous | |
| - | + | < 0 always | Spontaneous always |
| - | - | < 0 at low T | Spontaneous at low T |
Determining Temperature for Spontaneity
Identify what is meant by "high T" or "low T" :
- Water freezing:
- H2O(l) \rightleftharpoons H2O(s) (Spontaneous at low T, below 0 °C)
- Water evaporating:
- H2O(l) \rightleftharpoons H2O(g) (Spontaneous at high T, above 100 °C)
- Water freezing:
To find the temperature where equilibria occurs:
- Set \Delta G = 0 (Equilibrium condition):
0 = \Delta H - T \cdot DS - Rearranged gives:
T = \frac{\Delta H}{DS} - Example:
- For a reaction where
\Delta H = 125 kJ mol^{-1} and
DS = 325 J mol^{-1} K^{-1}, find the temperature (in °C) above which the reaction is spontaneous.
- For a reaction where
- Set \Delta G = 0 (Equilibrium condition):
Entropy Change for Phase Changes
For phase changes:
- \Delta G = \Delta H - T \cdot DS
- Set equilibrium to zero:
0 = \Delta H - T \cdot DS
- Solving gives:
DS = \frac{\Delta H}{T}
For example, considering water:
- H2O(s) \rightleftharpoons H2O(l)
- where
- \Delta H = \Delta H_{fus}
- T = melting point
- H2O(l) \rightleftharpoons H2O(g)
- where
- \Delta H = \Delta H_{vap}
- T = boiling point
- H2O(s) \rightleftharpoons H2O(l)