Uniform Distribution: PDF is constant over the range $[a,b]$:
f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \ 0, & \text{otherwise} \end{cases}
Normal Distribution: Bell-shaped PDF given by:
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - \mu)^2}{2\sigma^2}}
where $\mu$ is the mean and $\sigma$ is the standard deviation.
Lognormal Distribution: PDF:
f(x) = \frac{1}{x \sigma \sqrt{2\pi}} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}
only for $x > 0$.
Exponential Distribution: PDF:
f(x) = \lambda e^{-\lambda x}, \; x \geq 0
where $\lambda$ is the rate parameter.
Gamma Distribution: PDF for shape $\alpha$ and scale $\beta$:
f(x) = \frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha - 1} e^{-\frac{x}{\beta}}, \; x \geq 0