BAS CAL | Limits

Limit of a Function

  • the behavior of a function at a certain point

  • represented as f(x) → ?

    • the limit of the function, f(x), as x approaches ?

Limit Equation

\lim_{x\to a}f\left(x\right)=L

where:

  • L is the limit of f(x) as x approaches a

Limits vs Values

  • f(a) is the value of the function at x=a

  • \lim_{x\to a}f\left(x\right)=L is the value as x approaches but not equal to a.

  • The limit might not always exist.

  • The limit is usually equal to f(a), but that is not always the case.

Existence of Limits

  • The limit does not exist when:

    • The left hand limit (a-) and right hand limit (a+) are not equal

      • “d.n.e.” or “does not exist” must be written

    • The function increases or decreases without bounds in either direction

      • “-∞” or “+∞” must be written

    • the value increases without bounds from one side, and decreases without bounds from the other

      • “d.n.e.” or “does not exist” must be written

One-sided Limits

  • used if:

    • the function’s domain only uses one side of the number

    • the function behaves differently on both sides of a number

  • common in radical and piecewise functions, as well as ones involving absolute value

Right-hand Limit

\lim_{x\to a^{+}}f\left(x\right) | applies when you are only using numbers greater than a

Left-hand Limit

\lim_{x\to a^{-}}f\left(x\right) | applies when you are only using numbers less than a

Informal Way of Solving for Limits

Table of Values

  • Using the given function, make two tables of graphs where the x-values are getting increasingly close to or approaching a. One should have the values increase, and the other should have the value decrease.

  • Write their corresponding y-values

  • Never use a in the table of graphs.

  • Based on the y-values, infer the limit

Graph

  • Use a graph to interpret the limit provided.

  • Just because there is a hole at a does not mean the y-coordinate of the hole is not the limit.

  • The limit only exists if the height being approached is the same for the left-hand and right-hand limits.

  • If the limit increases/decreases without bounds, then it is infinite.

Limit Laws

  • \lim_{x\to a}c=c | The limit of a constant is the given constant.

  • \lim_{x\to a}x=a | The limit of of the identity function is a.

  • \lim_{x\to a}\left\lbrack cf\left(x\right)\right\rbrack=c\lim_{x\to a}f\left(x\right) | The limit of a constant multiple

  • \lim_{x\to a}\left\lbrack f\left(x\right)\right.+g\left(x\right)]=\lim_{x\to a}f\left(x\right)+\lim_{x\to a}g\left(x\right) | The limit of a sum is the sum of their limits.

  • \lim_{x\to a}\left\lbrack f\left(x\right)\right.-g\left(x\right)]=\lim_{x\to a}f\left(x\right)-\lim_{x\to a}g\left(x\right) | The limit of a sum is the sum of their limits.

  • \lim_{x\to a}\left\lbrack f\left(x\right)\right.g\left(x\right)]=\lim_{x\to a}f\left(x\right)\cdot\lim_{x\to a}g\left(x\right) | The limit of a product is the product of their limits.

  • \lim_{x\to a}\left\lbrack\frac{f\left(x\right)}{g\left(x\right)}\right\rbrack=\frac{\lim_{x\to a}f\left(x\right)}{\lim_{x\to a}g\left(x\right)} | The limit of a quotient is the quotient of their limits.

  • \lim_{x\to a}\left\lbrack f\left(x\right)\right\rbrack^{n}=\left\lbrack\lim_{x\to a}f\left(x\right)\right\rbrack^{n} | The limit of the nth power of a function is the nth power of its limit.

  • \lim_{x\to a}\sqrt[n]{f\left(x\right)}=\sqrt[n]{\lim_{x\to a}f\left(x\right)} | The limit of the nth root of a function is the nth root of its limit.

Substitution Principle

    As long as f(a) is a real number or well-defined:

        \lim_{x\to a}f\left(x\right)=f\left(a\right)

Indeterminate Forms

  • used when f\left(a\right)=\frac00

Factoring

  • Factor the numerator/denominator and cancel out the common factors so that the denominator is no longer equal to 0.

  • Find the limit as usual.

Rationalizing

  • Find the conjugate of the numerator or denominator, depending on what you need to rationalize.

  • Multiply the numerator and denominator by the conjugate.

  • If necessary, cancel the terms before solving.

Infinite Limits

  • occurs when the function value increases/decreases without bounds

Vertical Asymptote

  • In rational functions, infinite limits occur when a is substituted for x and the denominator is equal to 0.

    • This entails that there is a vertical asymptote at x=a

Rules

Let a, k be real numbers and k≠0. In \lim_{x\to a}\frac{f\left(x\right)}{g\left(x\right)} , \lim_{x\to a}f\left(x\right)=k and \lim_{x\to a}g\left(x\right)=0

  • If k > 0 and g(x) → 0 through positive values, then \lim_{x\to a^{+}}\frac{f\left(x\right)}{g\left(x\right)}=+\infty

  • If k > 0 and g(x) → 0 through negative values, then \lim_{x\to a^{-}}\frac{f\left(x\right)}{g\left(x\right)}=-\infty

  • If k < 0 and g(x) → 0 through positive values, then \lim_{x\to a^{+}}\frac{f\left(x\right)}{g\left(x\right)}=-\infty

  • If k < 0 and g(x) → 0 through negative values, then \lim_{x\to a^{-}}\frac{f\left(x\right)}{g\left(x\right)}=+\infty

  • Note: If the whole expression in the denominator is raised to an even power, the sign of the limit will match the one of the numerator.

Limits at Infinity

Rational Functions

  • \lim_{x\to+\infty}\frac{c}{x^{n}}=0

  • \lim_{x\to-\infty}\frac{c}{x^{n}}=0

  • Using these concepts, you can do the following to solve for the limit of a rational function:

    1. Divide each term in both the numerator and the denominator by the highest power of x in the denominator.

    2. Get the limit of each term based on the theorems above and the limit of a constant rule.

  • In simpler words:

    • If the largest power is in the denominator, then the limit is zero.

    • If the largest power is in the numerator, then the limit is the quotient of the numerator’s leading coefficient and the denominator’s leading coefficient.

Polynomial Functions

  • Look at the term with the highest degree.

  • If n is even,

    • \lim_{x\to+\infty}x^{n}=+\infty

    • \lim_{x\to-\infty}x^{n}=+\infty

  • If n is odd,

    • \lim_{x\to+\infty}x^{n}=+\infty

    • \lim_{x\to-\infty}x^{n}=-\infty

Limits of Exponential Functions

If b > 1

  • \lim_{x\to0}b^{x}=1

  • \lim_{x\to a}b^{x}=b^{a}

  • \lim_{x\to+\infty}b^{x}=+\infty

  • \lim_{x\to-\infty}b^{x}=0

If 0 < b < 1

  • \lim_{x\to0}b^{x}=1

  • \lim_{x\to a}b^{x}=b^{a}

  • \lim_{x\to+\infty}b^{x}=0

  • \lim_{x\to-\infty}b^{x}=+\infty

Limits of Logarithmic Functions

If b > 1

  • \lim_{x\to1}\log_{b}x=1

  • \lim_{x\to a}\log_{b}x=\log_{b}a

  • \lim_{x\to0^{+}}\log_{b}x=-\infty

  • \lim_{x\to+\infty}\log_{b}x=+\infty

If 0 < b < 1

  • \lim_{x\to1}\log_{b}x=1

  • \lim_{x\to a}\log_{b}x=\log_{b}a

  • \lim_{x\to0^{+}}\log_{b}x=+\infty

  • \lim_{x\to+\infty}\log_{b}x=-\infty

Limits of Trig Functions

Sine

  • \lim_{x\to a}\sin x=\sin a

Cosine

  • \lim_{x\to a}\cos x=\cos a

Tangent

  • \lim_{x\to a}\tan x=\tan a

Cotangent

  • \lim_{x\to a}\cot x=\cot a

Secant

  • \lim_{x\to a}\sec x=\sec a

If c=\frac{\pi}{2}+2\pi k

  • \lim_{x\to c^{-}}\sec x=+\infty

  • \lim_{x\to c^{+}}\sec x=-\infty

If c=\frac{3\pi}{2}+2\pi k

  • \lim_{x\to c^{-}}\sec x=-\infty

  • \lim_{x\to c^{+}}\sec x=+\infty

Cosecant

  • \lim_{x\to a}\csc x=\csc a

If c=\pi+k\pi

  • \lim_{x\to c^{-}}\sec x=+\infty

  • \lim_{x\to c^{+}}\sec x=-\infty

If c=2\pi k

  • \lim_{x\to c^{-}}\sec x=-\infty

  • \lim_{x\to c^{+}}\sec x=+\infty

Special Limits

  • \lim_{x\to0}\frac{\sin x}{x}=1

  • \lim_{x\to0}\frac{1-\cos x}{x}=0

  • \lim_{x\to0}\frac{e^{x}-1}{x}=1