CZ

Gas Exchange & Transport

Learning Outcomes

  • Define partial pressure and relate it to a gas mixture (air).

  • Explain the influence of partial pressure on gas transport by blood.

  • Describe mechanisms of transporting O2 and CO2

  • Discuss metabolic regulation of gas exchange (pH, temperature, BPG,PCO2,PO2)

  • Evaluate effects of blood gases and pH on respiratory rhythm.

Fundamental Gas Laws

  • Dalton’s Law

    • Total pressure of a gas mixture = sum of individual partial pressures.

    • Partial pressure ( P_x ) of a gas is directly proportional to its % composition.

  • Henry’s Law

    • When a gas contacts a liquid, the quantity dissolved is proportional to its P_x.

    • At equilibrium, gas P_x is identical in gas & liquid phases.

    • Solubility modifiers:
      • \mathrm{CO2} ≈ 20× more soluble than \mathrm{O2}; \mathrm{N_2} barely dissolves.
      • ↑Temperature → ↓Solubility (gas escapes).

External vs. Internal Respiration

  • External (pulmonary): diffusion across alveolar membrane.

  • Internal (tissue): diffusion between systemic capillaries & cells.

  • Both rely on:
    • Physical gas laws (partial pressure & solubility).
    • Alveolar gas composition.

Respiratory Membrane Characteristics

  • Thickness: 0.5{-}1\,\mu\text{m}.

  • Surface area: ≈40× total skin area.

  • Pathologies:
    • Pulmonary edema → thicker barrier → ↓ diffusion.
    • Emphysema, tumors, inflammation, mucus → ↓ surface area.
    • Result: impaired gas exchange.

Partial-Pressure Gradients (Resting, Sea Level)

  • \mathrm{O2}
    • Alveolar P
    {O2}=104\,\text{mmHg} vs. Pulmonary venous P{O_2}=40\,\text{mmHg}.
    • Steep gradient → rapid diffusion; equilibrium in ≈0.25\,\text{s} (1/3 capillary transit time).
    • Adequate even when cardiac output triples.

  • \mathrm{CO2}
    • Venous P
    {CO2}=45\,\text{mmHg} vs. Alveolar P{CO2}=40\,\text{mmHg}. • Gradient less steep, but high solubility → equal exchange rate with \mathrm{O2}.

Ventilation–Perfusion (V̇/Q̇) Coupling

  • Perfusion: blood flow reaching alveoli.

  • Ventilation: air reaching alveoli.

  • Local autoregulation matches V̇ to Q̇:
    • ↓Alveolar P{O2} → arteriolar constriction → blood diverted to better-ventilated alveoli.
    • ↑Alveolar P{CO2} → bronchiolar dilation → CO₂ elimination enhanced.

Transport of Respiratory Gases

  • Oxygen
    • 1.5–2 % dissolved in plasma.
    • 98–98.5 % bound to hemoglobin (Hb).
    • Each Hb carries 4 \mathrm{O2} → 1 RBC (~250 × 10⁶ Hb) binds ≈1 billion \mathrm{O2}.

  • Carbon Dioxide
    • 7–10 % dissolved.
    • 20 % bound to Hb (carbamino-Hb).
    • 70 % as bicarbonate ions in plasma.

Oxygen–Hemoglobin Chemistry

  • Reversible reaction: \mathrm{HHb + O2 \leftrightarrow HbO2 + H^+}.

  • Affinity changes with ligation:
    • Binding of first \mathrm{O_2} raises affinity (co-operativity).
    • Release lowers affinity.

  • Saturation states:
    • 100 % → all 4 heme sites filled.
    • Partial (1–3 sites) common in venous blood.

Oxygen-Hemoglobin Dissociation Curve
  • Sigmoidal (S-shape).

  • Arterial blood (rest): P{O2}=100\,\text{mmHg}, Hb ~98 % saturated, content 20 vol %.

  • Venous blood: P{O2}=40\,\text{mmHg}, Hb ~75 % saturated → 5 vol % “venous reserve”.

  • Plateau (upper flat) provides a safety margin (altitude, lung disease).

  • Steep portion facilitates unloading in tissues; small P{O2} drop → large O₂ release.

Factors Shifting the Curve
  • Right shift (↓ affinity / ↑ unloading):
    • ↑Temperature.
    • ↑H^+ (↓pH).
    • ↑P{CO2}.
    • ↑BPG (2,3-bisphosphoglycerate).
    • Bohr effect: \uparrow P{CO2} or \downarrow pH weakens Hb-O₂ bond.

  • Left shift (↑ affinity / ↓ unloading):
    • Opposite changes (↓Temp, ↓H^+, ↓P{CO2}, ↓BPG).

  • Exercise & actively metabolizing tissues: heat, acid, & CO₂ production ↑ → right shift → enhanced O₂ delivery.

Five Major Modulators of O₂-Hb Binding
  1. P{O2}. 2. Temperature. 3. pH (H^+). 4. P{CO2}. 5. BPG concentration.

Hypoxia Types
  • Anemic: low Hb or RBC count.

  • Ischemic: impaired blood flow.

  • Histotoxic: cells cannot use O₂ (e.g., cyanide).

  • Hypoxemic: ventilation deficit/pulmonary disease.

  • CO poisoning: Hb affinity for CO >200× O₂; treated by hyperbaric O₂.

Carbon Dioxide Transport & Exchange

  1. Dissolved 7{-}10\%.

  2. Carbamino-Hb 20\%
    • Reaction: \mathrm{CO2 + Hb\text{-}NH2 \leftrightarrow Hb\text{-}NHCOO^- + H^+}.

  3. Bicarbonate (major)\;70\%
    • Carbonic anhydrase (RBC) catalyzes:
    \mathrm{CO2 + H2O \leftrightarrow H2CO3 \leftrightarrow H^+ + HCO_3^-}.

Chloride Shift
  • Systemic capillaries: HCO_3^- exits RBC → Cl^- enters to maintain electroneutrality.

  • Pulmonary capillaries: reverse shift; HCO3^- re-enters, combines with H^+ → H2CO3 → CO2 + H2O → CO2 diffuses into alveoli.

Haldane Effect
  • Lower P{O2} / reduced Hb → ↑CO₂ carriage.

  • Facilitates CO₂ pick-up in tissues & release in lungs.

  • Synergistic with Bohr effect (CO₂ promotes O₂ unloading, O₂ unloading promotes CO₂ loading).

Acid–Base Homeostasis

  • Carbonic Acid–Bicarbonate Buffer:
    • Acts instantly: excess H^+ + HCO3^- → H2CO3; deficit H^+ → H2CO3 \rightarrow H^+ + HCO3^-.

  • Respiratory contribution:
    • Hypoventilation → ↑P{CO2} → ↑H^+ (↓pH).
    • Hyperventilation → ↓P{CO2} → ↓H^+ (↑pH).
    • Can partially compensate metabolic acidosis/alkalosis.

CO₂ and O₂ Competition for Heme
  • No direct competition: CO₂ binds globin (carbamino), not heme Fe; O₂ binds heme Fe.

  • Exception: CO (carbon monoxide) competes for heme Fe and displaces O₂.

Practice / DIY Summary

  1. State Dalton’s & Henry’s laws and their respiratory relevance.

  2. List & explain 5 factors affecting O₂-Hb binding/unbinding.

  3. Outline three CO₂ transport forms and associated reactions.