Parent Functions
\
Linear Function
f(x) = x
Domain: {x E R}
Range: {y E R}
\
Quadratic Function
f(x) = x²
Domain: {x E R}
Range: {y E R/0 ≤ y}
\
Square Root Function
f(x) = √x
Domain: {x E R/0 ≤ x}
Range: {y E R/0 ≤ y}
\
Reciprocal Function
f(x) = 1/x
x | y |
---|
-2 | -1/2 |
-1 | -1 |
-0.5 | -2 |
0.5 | 2 |
1 | 1 |
2 | 1/2 |
Domain: {x E R/x ≠ 0}
Range: {y E R/y ≠ 0}
Asymptote: x = 0, y = 0
\
Absolute Value Function
f(x) = |x|
Domain: {x E R}
Range: {y E R/0 ≤ y}
\
Cubic Function
f(x) = x³
Domain: {x E R}
Range: {y E R}
\
Transformed functions: @@f(x) = a(k(x-d)) + c@@
- Vertical Stretch: ==a==
- By a factor of….
- If negative, reflection in the x axis
- Horizontal Stretch: ^^k^^
- Always 1/k (flipped)
- By a factor of….
- If negative, reflection in the y axis
- Vertical Translation: ==c==
- if positive, moves up
- If negative, moves down
- Horizontal Translation: ^^d^^
- Always the opposite sign of what it is in the brackets (sign is flipped)
- If positive in bracket (so negative alone), then it moves left ( <-- )
- If negative in bracket (so positive alone), then it moves right ( --> )
Mapping
- Draw the parent functions’ table of values
- Create mapping notation using:
Mapping Notation: @@((1/k)x + d, ay + c)@@
- Apply mapping notation to the parent function and graph (following BEDMAS, order of operations)
\
Quadratic | g(x) = a(k(x-d))² + c |
---|
Reciprocal | g(x) = a(1/(k(x-d)) + c |
Cubic | g(x) = a(k(x-d))³ + c |
Square Root | g(x) = a(√k(x-d) ) + c |
Absolute Value | g(x) = a |k(x-d)| + c |
\
Domain and Range of Functions from Equations
- Linear:
- Cubic:
- Quadratic:
- D: {x E R}
- R: {y E R/0 ≤ y}
- c is the restriction (replacing zero)
- Absolute Value:
- D: {x E R}
- R: {y E R/0 ≤ y}
- c is the restriction (replacing zero)
- Reciprocal:
- D: {x E R/ x ≠ 0}
- c replaces the restriction
- R: {y E R/ y ≠ 0}
- d replaces the restriction
- The function cannot touch the asymptote thus the asymptote is our restriction
- Square Root:
- D: {x E R / 0 ≤ x}
- Make the number under the square root sign as small as it can be, so zero (because it cannot be negative since you can’t have a negative radicand)
- R: {y E R / 0 ≤ y}
- Look at what your lowest y could be as a result of the reduction of x for domain
\
The Inverse Function
- Write the function in x-y notation
- Swap x and y
- Solve for y
\