knowt logo

03: Various Types of Functions 

Parent Functions

Linear Function

f(x) = x

x

y

-2

-2

-1

-1

0

0

1

1

2

2

Domain: {x E R}

Range: {y E R}

Quadratic Function

f(x) = x²

x

y

-2

4

-1

1

0

0

1

1

2

4

Domain: {x E R}

Range: {y E R/0 ≤ y}

Square Root Function

f(x) = √x

x

y

0

0

1

1

4

2

Domain: {x E R/0 ≤ x}

Range: {y E R/0 ≤ y}

Reciprocal Function

f(x) = 1/x

x

y

-2

-1/2

-1

-1

-0.5

-2

0.5

2

1

1

2

1/2

Domain: {x E R/x ≠ 0}

Range: {y E R/y ≠ 0}

Asymptote: x = 0, y = 0

Absolute Value Function

f(x) = |x|

x

y

-2

2

-1

1

0

0

1

1

2

2

Domain: {x E R}

Range: {y E R/0 ≤ y}

Cubic Function

f(x) = x³

x

y

-2

-8

-1

-1

0

0

1

1

2

8

Domain: {x E R}

Range: {y E R}

Transformations of Parent Functions

Transformed functions: f(x) = a(k(x-d)) + c

  • Vertical Stretch: a

    • By a factor of….

    • If negative, reflection in the x axis

  • Horizontal Stretch: k

    • Always 1/k (flipped)

    • By a factor of….

    • If negative, reflection in the y axis

  • Vertical Translation: c

    • if positive, moves up

    • If negative, moves down

  • Horizontal Translation: d

    • Always the opposite sign of what it is in the brackets (sign is flipped)

    • If positive in bracket (so negative alone), then it moves left ( <-- )

    • If negative in bracket (so positive alone), then it moves right ( --> )

Mapping

  1. Draw the parent functions’ table of values

  2. Create mapping notation using:

Mapping Notation: ((1/k)x + d, ay + c)

  1. Apply mapping notation to the parent function and graph (following BEDMAS, order of operations)

Combinations of Transformations

Quadratic

g(x) = a(k(x-d))² + c

Reciprocal

g(x) = a(1/(k(x-d)) + c

Cubic

g(x) = a(k(x-d))³ + c

Square Root

g(x) = a(√k(x-d) ) + c

Absolute Value

g(x) = a |k(x-d)| + c

Domain and Range of Functions from Equations

  • Linear:

    • D: {x E R}

    • R: {y ER}

  • Cubic:

    • D: {x E R}

    • R: {y ER}

  • Quadratic:

    • D: {x E R}

    • R: {y E R/0 ≤ y}

      • c is the restriction (replacing zero)

  • Absolute Value:

    • D: {x E R}

    • R: {y E R/0 ≤ y}

      • c is the restriction (replacing zero)

  • Reciprocal:

    • D: {x E R/ x ≠ 0}

      • c replaces the restriction

    • R: {y E R/ y ≠ 0}

      • d replaces the restriction

        • The function cannot touch the asymptote thus the asymptote is our restriction

  • Square Root:

    • D: {x E R / 0 ≤ x}

      • Make the number under the square root sign as small as it can be, so zero (because it cannot be negative since you can’t have a negative radicand)

    • R: {y E R / 0 ≤ y}

      • Look at what your lowest y could be as a result of the reduction of x for domain

The Inverse Function

  1. Write the function in x-y notation

  2. Swap x and y

  3. Solve for y

03: Various Types of Functions 

Parent Functions

Linear Function

f(x) = x

x

y

-2

-2

-1

-1

0

0

1

1

2

2

Domain: {x E R}

Range: {y E R}

Quadratic Function

f(x) = x²

x

y

-2

4

-1

1

0

0

1

1

2

4

Domain: {x E R}

Range: {y E R/0 ≤ y}

Square Root Function

f(x) = √x

x

y

0

0

1

1

4

2

Domain: {x E R/0 ≤ x}

Range: {y E R/0 ≤ y}

Reciprocal Function

f(x) = 1/x

x

y

-2

-1/2

-1

-1

-0.5

-2

0.5

2

1

1

2

1/2

Domain: {x E R/x ≠ 0}

Range: {y E R/y ≠ 0}

Asymptote: x = 0, y = 0

Absolute Value Function

f(x) = |x|

x

y

-2

2

-1

1

0

0

1

1

2

2

Domain: {x E R}

Range: {y E R/0 ≤ y}

Cubic Function

f(x) = x³

x

y

-2

-8

-1

-1

0

0

1

1

2

8

Domain: {x E R}

Range: {y E R}

Transformations of Parent Functions

Transformed functions: f(x) = a(k(x-d)) + c

  • Vertical Stretch: a

    • By a factor of….

    • If negative, reflection in the x axis

  • Horizontal Stretch: k

    • Always 1/k (flipped)

    • By a factor of….

    • If negative, reflection in the y axis

  • Vertical Translation: c

    • if positive, moves up

    • If negative, moves down

  • Horizontal Translation: d

    • Always the opposite sign of what it is in the brackets (sign is flipped)

    • If positive in bracket (so negative alone), then it moves left ( <-- )

    • If negative in bracket (so positive alone), then it moves right ( --> )

Mapping

  1. Draw the parent functions’ table of values

  2. Create mapping notation using:

Mapping Notation: ((1/k)x + d, ay + c)

  1. Apply mapping notation to the parent function and graph (following BEDMAS, order of operations)

Combinations of Transformations

Quadratic

g(x) = a(k(x-d))² + c

Reciprocal

g(x) = a(1/(k(x-d)) + c

Cubic

g(x) = a(k(x-d))³ + c

Square Root

g(x) = a(√k(x-d) ) + c

Absolute Value

g(x) = a |k(x-d)| + c

Domain and Range of Functions from Equations

  • Linear:

    • D: {x E R}

    • R: {y ER}

  • Cubic:

    • D: {x E R}

    • R: {y ER}

  • Quadratic:

    • D: {x E R}

    • R: {y E R/0 ≤ y}

      • c is the restriction (replacing zero)

  • Absolute Value:

    • D: {x E R}

    • R: {y E R/0 ≤ y}

      • c is the restriction (replacing zero)

  • Reciprocal:

    • D: {x E R/ x ≠ 0}

      • c replaces the restriction

    • R: {y E R/ y ≠ 0}

      • d replaces the restriction

        • The function cannot touch the asymptote thus the asymptote is our restriction

  • Square Root:

    • D: {x E R / 0 ≤ x}

      • Make the number under the square root sign as small as it can be, so zero (because it cannot be negative since you can’t have a negative radicand)

    • R: {y E R / 0 ≤ y}

      • Look at what your lowest y could be as a result of the reduction of x for domain

The Inverse Function

  1. Write the function in x-y notation

  2. Swap x and y

  3. Solve for y

robot