03: Various Types of Functions 

Parent Functions

\

Linear Function

f(x) = x

xy
-2-2
-1-1
00
11
22

Domain: {x E R}

Range: {y E R}

\

Quadratic Function

f(x) = x²

xy
-24
-11
00
11
24

Domain: {x E R}

Range: {y E R/0 ≤ y}

\

Square Root Function

f(x) = √x

xy
00
11
42

Domain: {x E R/0 ≤ x}

Range: {y E R/0 ≤ y}

\

Reciprocal Function

f(x) = 1/x

xy
-2-1/2
-1-1
-0.5-2
0.52
11
21/2

Domain: {x E R/x ≠ 0}

Range: {y E R/y ≠ 0}

Asymptote: x = 0, y = 0

\

Absolute Value Function

f(x) = |x|

xy
-22
-11
00
11
22

Domain: {x E R}

Range: {y E R/0 ≤ y}

\

Cubic Function

f(x) = x³

xy
-2-8
-1-1
00
11
28

Domain: {x E R}

Range: {y E R}

\

Transformations of Parent Functions

Transformed functions: @@f(x) = a(k(x-d)) + c@@

  • Vertical Stretch: ==a==
    • By a factor of….
    • If negative, reflection in the x axis
  • Horizontal Stretch: ^^k^^
    • Always 1/k (flipped)
    • By a factor of….
    • If negative, reflection in the y axis
  • Vertical Translation: ==c==
    • if positive, moves up
    • If negative, moves down
  • Horizontal Translation: ^^d^^
    • Always the opposite sign of what it is in the brackets (sign is flipped)
    • If positive in bracket (so negative alone), then it moves left ( <-- )
    • If negative in bracket (so positive alone), then it moves right ( --> )

Mapping

  1. Draw the parent functions’ table of values
  2. Create mapping notation using:

Mapping Notation: @@((1/k)x + d, ay + c)@@

  1. Apply mapping notation to the parent function and graph (following BEDMAS, order of operations)

\

Combinations of Transformations

Quadraticg(x) = a(k(x-d))² + c
Reciprocalg(x) = a(1/(k(x-d)) + c
Cubicg(x) = a(k(x-d))³ + c
Square Rootg(x) = a(√k(x-d) ) + c
Absolute Valueg(x) = a |k(x-d)| + c

\

Domain and Range of Functions from Equations

  • Linear:
    • D: {x E R}
    • R: {y ER}
  • Cubic:
    • D: {x E R}
    • R: {y ER}
  • Quadratic:
    • D: {x E R}
    • R: {y E R/0 ≤ y}
    • c is the restriction (replacing zero)
  • Absolute Value:
    • D: {x E R}
    • R: {y E R/0 ≤ y}
    • c is the restriction (replacing zero)
  • Reciprocal:
    • D: {x E R/ x ≠ 0}
    • c replaces the restriction
    • R: {y E R/ y ≠ 0}
    • d replaces the restriction
      • The function cannot touch the asymptote thus the asymptote is our restriction
  • Square Root:
    • D: {x E R / 0 ≤ x}
    • Make the number under the square root sign as small as it can be, so zero (because it cannot be negative since you can’t have a negative radicand)
    • R: {y E R / 0 ≤ y}
    • Look at what your lowest y could be as a result of the reduction of x for domain

\

The Inverse Function

  1. Write the function in x-y notation
  2. Swap x and y
  3. Solve for y

\