CL

Chapter 6 – Chemical Composition: Avogadro’s Number, the Mole, and Molar Mass

Avogadro’s Number & the Concept of the Mole

  • Avogadro’s number: 6.022 \times 10^{23} objects.

    • Symbolically: 1\ \text{mol} = 6.022 \times 10^{23}\ \text{units (atoms, molecules, ions, etc.)}

    • Named after Amedeo Avogadro (1776–1856).

  • Analogy

    • Just as “1 dozen = 12,” “1 mole = 6.022\times10^{23}.”

    • If you own a mole of marbles, you possess 6.022\times10^{23} marbles.

Defining the Mole via Carbon-12

  • Official SI definition (simplified): the amount of substance containing as many elementary entities as there are atoms in exactly 12 g of ^{12}\text{C}.

  • Reasoning chain:

    1. One ^{12}\text{C} atom has a mass of 12\ \text{u} (atomic-mass units).

    2. Determine how many such atoms weigh 12 g → result is 6.022\times10^{23}.

    3. Therefore, any substance with 6.022\times10^{23} entities is 1 mol of that substance.

Mass Depends on the Identity of the Atoms

  • Same number of particles ≠ same mass.

    • 1 mol C atoms → 12.01\ \text{g}.

    • 1 mol S atoms → 32.07\ \text{g}.

  • Visual slide analogy: different “dozens” of nails weigh differently; likewise 1 mol of different atoms/compounds weighs differently.

Molar Mass (M)

  • Definition: mass of 1 mol of a substance.

    • For elements: numerically equal to the atomic mass on the periodic table, but expressed in \text{g mol}^{-1}.

    • For compounds: sum of the atomic masses of each atom contained in the formula.

  • Mathematical form: M = \sum{i} ni M_i

    • n_i = number of atoms of element i in the formula.

    • M_i = atomic mass of element i (u → g mol^{-1}).

  • Examples

    • Copper: one Cu atom = 63.55\ \text{u}, so 1\ \text{mol Cu} = 63.55\ \text{g}.

    • \ce{CO2}: M = 1(12.01) + 2(16.00) = 44.01\ \text{g mol}^{-1}.

    • \ce{H2O}: M = 2(1.008) + 1(15.999) \approx 18.02\ \text{g mol}^{-1}.

Reading Molar Masses from the Periodic Table

  • Hydrogen: atomic mass =1.008 ⇒ M_{\ce H}=1.008\ \text{g mol}^{-1}.

  • Oxygen: atomic mass =16.00 ⇒ M_{\ce O}=16.00\ \text{g mol}^{-1}.

  • Always keep at least two decimal places in calculated molar masses for accuracy.

Mole Ratios Embedded in Chemical Formulas

  • Chemical formula provides a conversion factor between moles of compound and moles of constituent atoms/ions.

    • \ce{H2O}: 2\ \text{mol H} : 1\ \text{mol O} : 1\ \text{mol H2O}.

    • \ce{CCl4}: 4\ \text{mol Cl} : 1\ \text{mol CCl4}.

    • \ce{CO2}: 2\ \text{mol O} : 1\ \text{mol CO2}.

  • Analogy: “1 spider → 8 legs” ; “1 molecule \ce{H2O} → 2 H atoms.”

Dimensional-Analysis Roadmap

Number of entities  ⇄  Moles  ⇄  Mass (g)
        |                 |
  Avogadro's #         Molar mass
  • Avogadro’s number converts between number ↔ moles.

  • Molar mass (g mol^{-1}) converts between moles ↔ grams.

  • Problems may chain multiple conversions (e.g., grams → moles → number of atoms in a sub-element).

Worked Examples

1. Molecules → Moles (HCl)
  • Given: 4.3\times10^{23} molecules \ce{HCl}.

  • Set-up: 4.3\times10^{23}\ \text{molecules} \times \frac{1\ \text{mol}}{6.022\times10^{23}\ \text{molecules}}.

  • Result (2 sig figs): 7.1\ \text{mol HCl}.

2. Grams → Molecules (Water)
  • Given: 35\ \text{g H2O}.

  • Steps:

    1. 35\ \text{g} \times \frac{1\ \text{mol}}{18.02\ \text{g}} = 1.94\ \text{mol}.

    2. 1.94\ \text{mol} \times 6.022\times10^{23} = 1.17\times10^{24} molecules.

  • Rounded to 2 sig figs: 1.2\times10^{24} water molecules.

3. Grams (Water) → Hydrogen Atoms
  • Given: 46\ \text{g H2O}.

  • Chain:

    1. \frac{46}{18.02}=2.55\ \text{mol H2O}.

    2. Mole ratio: 2.55\ \text{mol H2O} \times \frac{2\ \text{mol H}}{1\ \text{mol H2O}} = 5.10\ \text{mol H}.

    3. Convert to atoms: 5.10\ \text{mol} \times 6.022\times10^{23} = 3.07\times10^{24} H atoms.

  • Rounded (2 sig figs): 3.1\times10^{24} H atoms.

4. Molecules (CO₂) → Grams of Carbon
  • Given: 1.2\times10^{23} molecules \ce{CO2}.

  • Path: molecules → mol CO₂ → mol C → g C.

    1. \frac{1.2\times10^{23}}{6.022\times10^{23}}=0.199\ \text{mol CO2}.

    2. Mole ratio: 0.199\ \text{mol CO2} \times \frac{1\ \text{mol C}}{1\ \text{mol CO2}}=0.199\ \text{mol C}.

    3. Mass: 0.199\ \text{mol} \times 12.01\ \text{g mol}^{-1}=2.39\ \text{g}.

  • 2 sig figs → 2.4\ \text{g C}.

5. Grams (Carbonic Acid) → Hydrogen Atoms
  • Compound: \ce{H2CO3}; M = 63.02\ \text{g mol}^{-1}.

  • Given: 23\ \text{g}.

    1. 23\ \text{g} \times \frac{1\ \text{mol}}{63.02\ \text{g}} = 0.365\ \text{mol H2CO3}.

    2. Mole ratio: 2 mol H per 1 mol compound → 0.729\ \text{mol H}.

    3. Convert: 0.729\ \text{mol} \times 6.022\times10^{23}=4.39\times10^{23} H atoms.

  • Rounded (2 sig figs): 4.4\times10^{23} H atoms.

Conceptual & Real-World Connections

  • Ore analysis: compute % Fe in iron ore to gauge economic value.

  • Environmental chemistry: determine Cl mass in chlorofluorocarbons for ozone-depletion studies.

  • Industrial batching: recipes scaled by moles ensure stoichiometric precision (e.g., pharmaceuticals).

  • Counting by mass is essential because individual atoms/molecules are far too small to tally directly.

  • Ethical dimension: precise mole-based dosing prevents under/over-medication and minimizes waste.

Summary Cheat-Sheet

  • Always identify given and wanted quantities with units & substance labels.

  • Choose the correct bridge:

    • Avogadro’s number for number ↔ moles.

    • Molar mass for moles ↔ grams.

    • Formula subscripts for compound moles ↔ element moles.

  • Keep significant figures consistent with the least precise given data.

  • Track both units and chemical identity throughout calculations to avoid cancelation errors.