Avogadro’s number: 6.022 \times 10^{23} objects.
Symbolically: 1\ \text{mol} = 6.022 \times 10^{23}\ \text{units (atoms, molecules, ions, etc.)}
Named after Amedeo Avogadro (1776–1856).
Analogy
Just as “1 dozen = 12,” “1 mole = 6.022\times10^{23}.”
If you own a mole of marbles, you possess 6.022\times10^{23} marbles.
Official SI definition (simplified): the amount of substance containing as many elementary entities as there are atoms in exactly 12 g of ^{12}\text{C}.
Reasoning chain:
One ^{12}\text{C} atom has a mass of 12\ \text{u} (atomic-mass units).
Determine how many such atoms weigh 12 g → result is 6.022\times10^{23}.
Therefore, any substance with 6.022\times10^{23} entities is 1 mol of that substance.
Same number of particles ≠ same mass.
1 mol C atoms → 12.01\ \text{g}.
1 mol S atoms → 32.07\ \text{g}.
Visual slide analogy: different “dozens” of nails weigh differently; likewise 1 mol of different atoms/compounds weighs differently.
Definition: mass of 1 mol of a substance.
For elements: numerically equal to the atomic mass on the periodic table, but expressed in \text{g mol}^{-1}.
For compounds: sum of the atomic masses of each atom contained in the formula.
Mathematical form: M = \sum{i} ni M_i
n_i = number of atoms of element i in the formula.
M_i = atomic mass of element i (u → g mol^{-1}).
Examples
Copper: one Cu atom = 63.55\ \text{u}, so 1\ \text{mol Cu} = 63.55\ \text{g}.
\ce{CO2}: M = 1(12.01) + 2(16.00) = 44.01\ \text{g mol}^{-1}.
\ce{H2O}: M = 2(1.008) + 1(15.999) \approx 18.02\ \text{g mol}^{-1}.
Hydrogen: atomic mass =1.008 ⇒ M_{\ce H}=1.008\ \text{g mol}^{-1}.
Oxygen: atomic mass =16.00 ⇒ M_{\ce O}=16.00\ \text{g mol}^{-1}.
Always keep at least two decimal places in calculated molar masses for accuracy.
Chemical formula provides a conversion factor between moles of compound and moles of constituent atoms/ions.
\ce{H2O}: 2\ \text{mol H} : 1\ \text{mol O} : 1\ \text{mol H2O}.
\ce{CCl4}: 4\ \text{mol Cl} : 1\ \text{mol CCl4}.
\ce{CO2}: 2\ \text{mol O} : 1\ \text{mol CO2}.
Analogy: “1 spider → 8 legs” ; “1 molecule \ce{H2O} → 2 H atoms.”
Number of entities ⇄ Moles ⇄ Mass (g)
| |
Avogadro's # Molar mass
Avogadro’s number converts between number ↔ moles.
Molar mass (g mol^{-1}) converts between moles ↔ grams.
Problems may chain multiple conversions (e.g., grams → moles → number of atoms in a sub-element).
Given: 4.3\times10^{23} molecules \ce{HCl}.
Set-up: 4.3\times10^{23}\ \text{molecules} \times \frac{1\ \text{mol}}{6.022\times10^{23}\ \text{molecules}}.
Result (2 sig figs): 7.1\ \text{mol HCl}.
Given: 35\ \text{g H2O}.
Steps:
35\ \text{g} \times \frac{1\ \text{mol}}{18.02\ \text{g}} = 1.94\ \text{mol}.
1.94\ \text{mol} \times 6.022\times10^{23} = 1.17\times10^{24} molecules.
Rounded to 2 sig figs: 1.2\times10^{24} water molecules.
Given: 46\ \text{g H2O}.
Chain:
\frac{46}{18.02}=2.55\ \text{mol H2O}.
Mole ratio: 2.55\ \text{mol H2O} \times \frac{2\ \text{mol H}}{1\ \text{mol H2O}} = 5.10\ \text{mol H}.
Convert to atoms: 5.10\ \text{mol} \times 6.022\times10^{23} = 3.07\times10^{24} H atoms.
Rounded (2 sig figs): 3.1\times10^{24} H atoms.
Given: 1.2\times10^{23} molecules \ce{CO2}.
Path: molecules → mol CO₂ → mol C → g C.
\frac{1.2\times10^{23}}{6.022\times10^{23}}=0.199\ \text{mol CO2}.
Mole ratio: 0.199\ \text{mol CO2} \times \frac{1\ \text{mol C}}{1\ \text{mol CO2}}=0.199\ \text{mol C}.
Mass: 0.199\ \text{mol} \times 12.01\ \text{g mol}^{-1}=2.39\ \text{g}.
2 sig figs → 2.4\ \text{g C}.
Compound: \ce{H2CO3}; M = 63.02\ \text{g mol}^{-1}.
Given: 23\ \text{g}.
23\ \text{g} \times \frac{1\ \text{mol}}{63.02\ \text{g}} = 0.365\ \text{mol H2CO3}.
Mole ratio: 2 mol H per 1 mol compound → 0.729\ \text{mol H}.
Convert: 0.729\ \text{mol} \times 6.022\times10^{23}=4.39\times10^{23} H atoms.
Rounded (2 sig figs): 4.4\times10^{23} H atoms.
Ore analysis: compute % Fe in iron ore to gauge economic value.
Environmental chemistry: determine Cl mass in chlorofluorocarbons for ozone-depletion studies.
Industrial batching: recipes scaled by moles ensure stoichiometric precision (e.g., pharmaceuticals).
Counting by mass is essential because individual atoms/molecules are far too small to tally directly.
Ethical dimension: precise mole-based dosing prevents under/over-medication and minimizes waste.
Always identify given and wanted quantities with units & substance labels.
Choose the correct bridge:
Avogadro’s number for number ↔ moles.
Molar mass for moles ↔ grams.
Formula subscripts for compound moles ↔ element moles.
Keep significant figures consistent with the least precise given data.
Track both units and chemical identity throughout calculations to avoid cancelation errors.