Slide 1 – Lecture Title & Contributors
EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Topic: Body Composition (EXSS3071 — 2025 S1).
Lecturer: Kenneth Daniel (APD, AFHEA).
Acknowledgements: A/Prof Janelle Gifford, A/Prof Helen O’Connor, Ms Alison Miles.
Sets the scene for a methods-heavy exploration of how, why and when to measure body composition in sport and health contexts.
Slide 2 – Mental-Health Support Services
EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Lists on- and off-campus resources (CAPS, USYD crisis line, Butterfly Foundation, headspace, Lifeline, Beyond Blue, Batyr).
Key point: discussions about physique can trigger anxiety or disordered-eating concerns; practitioners must recognise red-flag behaviour and refer promptly.
Slide 3 – Ethical Imperative
EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Quotation (Swimming Australia 2023): body-comp assessment should occur only with a clear rationale.
Implies duty of care and avoidance of unnecessary physique monitoring, especially in adolescents and aesthetic sports.
Slide 4 – Why Measure Body Composition?
EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Health risk prediction: distinguishes over-weight vs over-fat.
Monitoring change: growth, ageing, training, rehab, supplements/meds.
Performance optimisation: aligning mass distribution with force/acceleration demands; strategic periodisation.
Clinical utility: tracking muscle loss post-injury or during cachexia.
Slide 5 – Periodisation Example
EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Case study: 9-year body-composition periodisation of an Olympic 1500 m runner (Stellingwerff 2018).
Athlete cycles through race-weight phases and muscle-accrual phases, proving body-comp targets must sync with macro- and micro-cycle goals.
Slide 6 – Lecture Overview
EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Compartment models (2-, 3-, 4-C).
Lab, 2-C: densitometry (UWW) & plethysmography (Bod Pod).
Field, 2-C: skinfolds, BIA.
Other technologies (DXA, MRI, CT, dilution methods).
Somatotyping.
Density equation preview D = M/V.
Slide 7 – Part 1 Intro (Lab 2-C Methods)
EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Announces underwater weighing (UWW) and air-displacement plethysmography (ADP/Bod Pod) as gold-standard density measures requiring controlled lab settings.
Slide 8 – Body-Compartment Categorisation
EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Graphic (Shaw et al 2015) divides body into FM, FFM, bone, organs, etc.
Emphasises that 2-C splits (FM vs FFM) assume fixed density & hydration values.
Slide 9 – Key Terminology
EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
FM, FFM, LBM, VAT, SAT, BMC, BMD, BD defined with chemical/functional distinctions.
Note: FFM ≈ 73 % water & 68 mmol K⁺ kg⁻¹.
Slide 10 – Two-Compartment Model Assumptions
EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Component | Density | Hydration | K⁺ content |
FM | 0.9007 g cm⁻³ | Anhydrous | 0 |
FFM | 1.1000 g cm⁻³ | 72–73 % | 68 mmol kg⁻¹ |
Violations (e.g., growth, ageing, osteoporosis) introduce systematic error.
Slide 11 – Archimedes’ Principle Refresher
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Buoyant force equals weight of displaced water.
Forms the theoretical basis for UWW; densities corrected to 4 °C reference.
Slide 12 – Underwater Weighing Equipment
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Photo of hydrostatic tank with seat & scale.
Key hardware: load cell (±0.01 kg), thermometer (water density adjustment), N₂ wash-out system for lung volume.
Slide 13 – UWW Workflow Graphic
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Stepwise: measure mass in air → subject exhales to RV → submerge & record mass in water → repeat for reliability.
Slide 14 – UWW Density Equations
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
BD = \frac{M_{\text{air}}}{M_{\text{air}} - M_{\text{water}} - (RV - GG)} \times \rho_{\text{water}}
RV = residual lung volume; GG = gut gas (~0.1 L).
Siri (1956): %BF = 495/BD − 450.
Brozek (1963): %BF = 497.1/BD − 451.9.
Slide 15 – Correction Factors
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Water temperature alters density (0.999 g cm⁻³ at 22 °C vs 0.997 at 35 °C).
Accurate RV measurement essential (He dilution or N₂ wash-out).
Menstrual-cycle phase & bone-mineral density can shift BD slightly.
Slide 16 – %Body-Fat Conversion
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Siri & Brozek equations reliable within BD range 1.03–1.10 g cm⁻³.
Outside range (children, sarcopenic elderly) require multicomponent models.
Slide 17 – UWW Standardisation
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Overnight fast, avoid gas-producing foods 12 h, tight swimwear, same cycle phase, prior technique coaching.
Calibrate scales + gas analysers before session; perform ≥3 trials within 0.1 kg SD.
Slide 18 – UWW Pros & Cons
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Pros: inexpensive, high precision, time-efficient vs isotope dilution.
Cons: discomfort, full submersion difficult for obese/elderly, scale drift, claustrophobia, lower BMD may bias low.
Clinician must weigh validity vs participant burden.
Slide 19 – Transition to Air-Displacement Plethysmography (ADP)
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
BOD POD exploits Boyle’s law to derive volume from pressure change; %BF via Siri/Brozek after BD computed.
Accepts individuals up to ≈225 kg.
Slide 20 – PEA POD (Infant ADP)
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Neonatal analogue measuring FM/FFM in <5 min; critical for low-birth-weight growth monitoring.
Slide 21 – Gas-Law Physics Behind ADP
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Boyle: P_1V_1 = P_2V_2; Poisson (adiabatic adjustment).
Chamber oscillates air at two frequencies to isolate thoracic gas volume.
Slide 22 – ADP Standardisation
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Fasted, euhydrated, void bladder.
Clothing: men—compression shorts; women—shorts + seam-free sports bra; swim-cap flattens hair.
Calibrate digital scale weekly & 50 L cylinder each session.
Slide 23 – ADP Pros & Cons
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Pros: 2 × 30 s scans, non-invasive, portable, accommodates larger users, TEM 0.4–1.2 %BF.
Cons: clothing/hair/moisture artefacts, claustrophobia, relies on 1950-60s density equations, predicted lung-volume error.
Slide 24 – Part 2 Intro (Field 2-C Methods)
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Moves to skinfolds and bio-electrical impedance (BIA): practical for clinics, teams, large cohorts.
Slide 25 – Anthropometry Defined
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Measurement of mass, stature, breadths, lengths, girths, skinfolds to describe phenotype; valued for talent ID, growth tracking, weight-category sports.
Slide 26 – Basic Anthropometric Kit
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Stadiometer, digital scale, Harpenden calipers, segmometer, non-stretch tape.
Illustration: climber study (Smith 2017) shows niche-sport profiling.
Slide 27 – Practical Profile (ISAK-Level Measures)
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
8-site skinfold sum, selected girths, biepicondylar breadths; enables physique trend monitoring across seasons.
Slide 28 – Applications & Limitations of Anthropometry
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Direct, cheap, rapid; but depends on strict landmarks and technician skill; %BF estimation requires population-specific equations.
Slide 29 – Subject Considerations & Consent
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Privacy, cultural sensitivity, minimal clothing, option for chaperone, avoid painful/injured sites; never compromise physical or emotional welfare.
Slide 30 – AIS Position on Disordered-Eating Risk
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
AIS 2020 guideline: certain presentations (under-age, active eating disorder) contra-indicate measurement; flags for referral pathways.
Slide 31 – Skinfold Technique Illustration
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Demonstrates parallel vs diagonal pinch, 1 cm jaw placement, 2 s read time; recommends duplicate measures within 0.5 mm.
Slide 32 – Converting Skinfolds to %Fat
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Apply population regression (e.g., Durnin-Womersley) to predict BD.
Convert BD to %BF via Siri/Brozek.
Emphasise using sum of skinfolds for longitudinal athlete monitoring to avoid prediction error.
Slide 33 – Assumptions & Error Sources
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Constant skin compressibility, fixed fat distribution, uniform FM/FFM densities.
Technical error of measurement (TEM) + biological error (hydration, menstrual phase) + UWW reference error.
Slide 34 – Interpreting Change Over Time
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Figure shows that weight loss with stable skinfolds likely reflects FFM loss; decreasing sum with stable mass indicates FM loss; both metrics needed for nuanced feedback.
Slide 35 – Anatomical Landmarks Protocol
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Palpate, release, remark; use fine-tip pen; confirm in anatomical position.
Landmarks underpin ISAK reliability thresholds (TEM < 1 mm for skinfolds).
Slide 36 – Landmark Accuracy Study
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Hume 2008: inter-tester TEM improves from 9 % to 4 % after standardised ISAK training.
Slide 37 – Technical Error of Measurement (TEM)
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Defines random-error quantification; small TEM is prerequisite for detecting “real” physique changes (≥2 × TEM).
Slide 38 – “Real Change?” Case
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Graph shows skinfold fluctuations across three sessions; only change exceeding 2SD flagged as true adaptation.
Slide 39 – Bio-Electrical Impedance (BIA) Overview
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Sends 50 kHz, 800 µA current.
Resistance ↑ in fat (14–22 % water); conductance ↑ in lean (73 % water).
Multi-frequency & segmental devices improve prediction of TBW & skeletal muscle.
Slide 40 – BIA Considerations
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Hydration, food, exercise, skin temp, electrode placement alter impedance.
Requires population-specific equations (athletes vs sedentary, ethnicity).
Best used for within-subject monitoring under strict standardisation.
Slide 41 – Part 3 Intro (Other Techniques)
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Transitions to multi-compartment and imaging methods for high-precision research and clinical diagnostics.
Slide 42 – Technique Inventory
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
DXA, MRI, CT, deuterium TBW, D₃-creatine (skeletal muscle mass), 4-C modelling, laser scanning, ultrasound.
Slide 43 – Dual-Energy X-Ray Absorptiometry (DXA)
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Simultaneously quantifies bone mineral, FM, and lean soft tissue; low radiation (≤5 µSv).
Scan time 5–30 min depending on beam type; expensive and size-limited.
Slide 44 – DXA Beam Technology
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Beam | Time | Pros | Cons |
Pencil | 14–28 min | low magnification error | slow |
Fan | ~5 min | fast | magnification artefact |
Narrow fan | 8–10 min | overlap ↑ accuracy | moderate speed |
Slide 45 – DXA Report Example
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Colour map showing android/gynoid fat %, regional lean mass; used for RED-S screening and limb muscle balance in return-to-play.
Slide 46 – MRI & CT Imaging
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
MRI: ~30 min, high soft-tissue contrast, no ionising radiation; contraindications (pacemaker).
CT: excellent VAT quantification but whole-body dose ≈8 years background radiation—research use limited.
Slide 47 – NMR Spectroscopy Advances
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
¹H-NMR permits in-vivo IMCL and liver fat quantification; emerging athlete-monitoring tool for overtraining & metabolic health.
Slide 48 – Deuterium Dilution
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Measures total body water; assumes tracer distributes only in water, equilibrates quickly, not metabolised.
FM calculated: Body Mass − FFM; FFM = TBW/0.732.
Slide 49 – Four-Compartment (4-C) Model
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Combines mass + volume (UWW/Bod Pod) + TBW (dilution/BIA) + BMC (DXA); considered modern gold standard; random error minimised as assumptions are distributed.
Slide 50 – Standardisation Essentials
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Technical + biological control reduces noise: overnight fast, rested, euhydrated, void, no exercise 12 h, same menstrual phase.
Video link provides demonstration checklist.
Slide 51 – Food/Fluid Intake Effects
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Kerr 2017: breakfast (750 kcal) increases DXA fat-mass estimate by ~0.3 kg; hydration shifts lean estimate.
Interpretation of change must consider presentation variability.
Slide 52 – Selecting the Right Technique
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Decision matrix: Why, What, Who, required validity/reliability, cost, time, access, operator skill.
Differentiate accuracy (validity) vs precision (repeatability).
Slide 53 – Part 4 Intro (Somatotyping)
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Moves from quantitative mass to shape descriptors using Heath-Carter system.
Slide 54 – Physique & Sport Performance
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Figure contrasts endurance, sprint, and aesthetic sport norms; highlights sport-specific somatotype “windows.”
Slide 55 – Somatotype Definition
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Three-number rating: Endomorphy (fatness), Mesomorphy (musculo-skeletal), Ectomorphy (linearity).
Rating scale: 1 = very low, 7 = very high (e.g., 3-5-2).
Slide 56 – Rating Summary Table
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Provides interpretive categories: moderate 3-5, high 5.5-7, very high ≥7.5.
Slide 57 – Three-Factor Examples
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Photos: Strongman (6-2-2), AFL forward (1-7-2), NBA centre (1-2-7); visualises somatotype spectrum.
Slide 58 – Heath-Carter Anthropometric Method
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
10 measures: stature, mass, four skinfolds, biepicondylar breadths (humerus/femur), flexed-arm & calf girths.
Equipment list; calculations for each component.
Slide 59 – Somatotype Applications
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Track growth, monitor training adaptations, compare sexes, assess body-image perception, talent ID.
Somatochart plotting: X = Ectomorph − Endomorph, Y = 2 × Mesomorph − (Ecto + Endo).
Slide 60 – Triathlon Performance Study
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Ironman (165 M, 22 F): lower endomorphy & higher ectomorphy correlate with faster total time; strongest in run leg (30 % variance).
Suggests physique acts as performance modulator even after training normalisation.
Slide 61 – End Slide (Thank You)
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Signals conclusion; invites questions.
Slides 62–67 – Topic Objectives
‡EXSS3071+Body+Composition+2025+S1.pdf](file-service://file-UNYypUZrTedW3jk6snDvVy)
Key learning outcomes (total 26) grouped under:
Technique identification & principles (UWW, Bod Pod, DXA, BIA, MRI).
Calculations (BD, %BF via Siri/Brozek).
Model distinctions (2- vs 3- vs 4-C; cadaver validation).
Practical measurement skills (landmarks, ISAK protocol, precision vs accuracy).
Professional conduct (modesty, consent, confidentiality).
Interpretation & application (athlete vs obese populations, change monitoring).
Somatotype theory and utilisation.