Bio241_chapter13_blood_lecture

Overview

  • Chapter focuses on Blood, Heart, and Circulation (BIOL 241 – Ch. 13)
  • Sub-topics: Blood • Pulmonary & Systemic Circulations • Heart Valves • Cardiac Cycle • Electrical Activity • Structure of Vessels

Functions of the Circulatory System

  • Transport
    • \mathrm{O_2}, nutrients, enzymes, hormones ⟶ tissues
    • \mathrm{CO_2} & metabolic wastes ⟶ excretory organs
  • Heat distribution → regulation of body temperature
  • Fluid, electrolyte & pH homeostasis
  • Protection
    • Immune surveillance (microbes, foreign Ag, tumors)
    • Hemostasis → prevents blood loss

Components of the Circulatory System

  • Cardiovascular system: heart + blood vessels (arteries, arterioles, capillaries, venules, veins)
  • Lymphatic system: returns excess interstitial fluid to venous blood; lymph nodes = immune organs

Composition of Whole Blood

  • Total volume ≈ 5 L
  • Two compartments:
    • Plasma (≈ 55 %)
    • 92 % H₂O, 8 % proteins + solutes (ions, nutrients, gases, wastes)
    • Serum = Plasma – clotting factors
    • Formed Elements (≈ 45 %)
    • \approx 95\% RBCs (erythrocytes) – anucleate
    • <1\% WBCs (leukocytes) – nucleated
    • \approx 5\% Platelets (thrombocytes) – anucleate

Hematocrit (Hct)

  • % RBCs in whole blood
    • Women: 36\text{–}46\%
    • Men: 41\text{–}53\%
  • Example: 80 mL sample → 30 mL RBCs ⇒ \text{Hct}=\frac{30}{80}\times100=37.5\% (within female range)

Plasma Proteins (7–9 % of plasma)

  • Albumin (60–80 %)
    • Creates colloid osmotic pressure → draws \mathrm{H_2O} into capillaries, maintains BP & volume
  • Globulins
    • Alpha/Beta: lipid carriers
    • Gamma: antibodies (immunoglobulins)
  • Fibrinogen → Fibrin (clotting)

Formed Elements Details

Erythrocytes (RBCs)

  • Flattened biconcave discs → large SA for diffusion
  • Lack nuclei & mitochondria; contain ~280 million Hb molecules/RBC
  • Production rate: \approx 3\times10^{11}\ \text{day}^{-1}

Leukocytes (WBCs)

  • Have nucleus, mitochondria, amoeboid motility, diapedesis capability
  • Granular (detox + heparin): neutrophils, eosinophils, basophils
  • Agranular (phagocytosis/antibodies): lymphocytes, monocytes

Platelets (Thrombocytes)

  • Smallest, anucleate fragments of megakaryocytes
  • Majority of clot mass; live 5–9 days
  • Release serotonin (vasoconstriction) & growth factors for vessel repair

Hematopoiesis

  • Occurs in myeloid (red marrow) & lymphoid tissue
  • Output: \approx5\times10^{11} cells/day
  • Fetal site = liver
  • Erythropoiesis
    • Stimulus: renal \mathrm{EPO}
    • Rate: 2.5\times10^{6}\ \text{sec}^{-1}; lifespan 120 days; old cells removed by liver, spleen, marrow; Fe recycled
  • Leukopoiesis
    • Regulated by cytokines (autocrine factors)

Blood Groups & Typing

  • ABO antigens on RBC membrane
    • A, B, AB, O (none)
  • Agglutination / Transfusion Reactions
    • Type A → anti-B Abs; Type B → anti-A; Type AB → none; Type O → both
    • Universal donor = O (no antigens); universal recipient = AB (no anti-A/B Abs)
  • Rh Factor
    • Rh⁺: D antigen; Rh⁻: none
    • Erythroblastosis fetalis: Rh⁻ mother sensitized by Rh⁺ fetus → anti-D Abs hemolyze next Rh⁺ fetus

Hemostasis (Bleeding Cessation)

  1. Platelet Plug (small tears)
    • Intact endothelium secretes prostacyclin (PGI₂) & NO → inhibit platelet stickiness & vasodilate
    • Damage exposes collagen; von Willebrand factor bridges collagen ↔ platelets
    • Platelet Release Reaction: ADP, serotonin, thromboxane A₂ (TxA₂)
    • Serotonin & TxA₂: vasoconstriction; ADP & TxA₂: recruit more platelets → positive feedback until plug forms
    • Aspirin inhibits TxA₂ synthesis ⇒ antiplatelet effect
  2. Coagulation (Fibrin Clot) (large tears)
    • Intrinsic Pathway (contact activation)
      • Negatively charged surface → activates factor XII ⇒ cascade ⇒ factor X (prothrombin activator)
    • Extrinsic Pathway (tissue factor)
      • Tissue thromboplastin (factor III) from damaged tissue directly activates factor X (shortcut)
    • Common Pathway: \mathrm{Prothrombin\ (II) \xrightarrow{Xa+Ca^{2+}+PL} Thrombin}
      \mathrm{Fibrinogen\ (I) \xrightarrow{Thrombin} Fibrin \rightarrow polymer}
  • Hemophilia: absence of factor VIII (intrinsic)
  • Vitamin K–dependent factors; Heparin blocks thrombin
  • Dissolution: Factor XII → kallikrein → plasminogen → plasmin → digests fibrin
  • Anticoagulants: Ca²⁺ chelators (citrate, EDTA), Heparin (activates antithrombin III), Coumarins (vit K antagonism ↓ Ca²⁺ availability)

Heart Anatomy & Circulations

  • Four chambers: 2 atria (receive) • 2 ventricles (pump)
  • Two pumps separated by muscular septum
  • Fibrous skeleton (dense CT between atria & ventricles): electrical insulation + valve rings (annuli fibrosi)
  • Pulmonary circuit: RV → pulmonary arteries → lungs → pulmonary veins → LA
  • Systemic circuit: LV → aorta → tissues → veins → RA
    • Systemic resistance > pulmonary; LV workload ≈ 5–7× RV ⇒ LV wall 3–4× thicker
    • Flow rates through both circuits must be equal

Heart Valves

  • Atrioventricular (AV): Right = tricuspid; Left = bicuspid/mitral
    • Chordae tendineae + papillary muscles prevent prolapse during systole
  • Semilunar: Aortic & Pulmonary; open in ventricular systole, close in diastole

Cardiac Cycle (Repeat every heartbeat)

  • Systole = contraction; Diastole = relaxation
  • Sequence
    1. Isovolumetric Contraction: ventricles contract, all valves closed, pressure ↑
    2. Ejection: when P{vent}>P{aorta/pulmon} → semilunars open → stroke volume ejected
    3. Isovolumetric Relaxation: ventricles relax, semilunars shut (dub), all valves closed
    4. Ventricular Filling: when P{atria}>P{vent} → AV valves open; final filling by atrial systole
  • Pressures: Systemic ≈ 120/80\ \text{mmHg}; Pulmonary ≈ 25/10
  • Volumes
    • End-diastolic (EDV) ("preload")
    • End-systolic (ESV)
    • Stroke Volume \mathrm{SV = EDV - ESV}; Example: \mathrm{SV}=80-20=60\,mL; \mathrm{EDV>ESV}

Heart Sounds & Murmurs

  • "Lub" (S₁): AV closure just after QRS
  • "Dub" (S₂): Semilunar closure at T-wave onset
  • Murmurs = turbulent flow (valve defects or septal defects)
    • Mitral stenosis → pulmonary hypertension
    • Incompetent valves → regurgitation
    • Septal defects (e.g., patent foramen ovale) ⇒ left→right shunt due to higher LV pressure

Electrical Activity & Conduction

Myocardium

  • Cardiac muscle cells connected by gap junctions → functional syncytium (atria & ventricles separate via fibrous skeleton)

Pacemaker (SA Node)

  • Resting V_m=-60\,mV → slow depolarization (pacemaker potential) via HCN Na⁺ channels (open on hyperpolarization)
  • Threshold -40\,mV → \mathrm{Ca^{2+}} influx (L-type) → AP upstroke; repolarization via \mathrm{K^{+}} efflux
  • Autonomic modulation alters slope of pacemaker potential

Ectopic Pacemakers

  • AV node, Purkinje, etc., have slower intrinsic rates; suppressed by SA overdrive; take over if SA blocked

Contractile Myocardial AP

  • RMP -90\,mV; rapid Na⁺ upstroke
  • Plateau (200–300 ms): balance of slow Ca²⁺ influx vs K⁺ efflux → prolonged refractory period (prevents tetany)

Conduction Pathway

  • SA node → atrial myocardium → AV node (delay 0.1 s) → Bundle of His → R/L bundle branches → Purkinje fibers (5 m/s) → ventricular myocardium (contr. starts 0.1–0.2 s after atria)

Excitation–Contraction Coupling

  • Extracellular Ca²⁺ via L-type channels triggers SR Ca²⁺ release (Ca²⁺-induced Ca²⁺-release); Ca²⁺ binds troponin; relaxation via uptake/outflow pumps

Refractory Period

  • ≈ 300 ms (≈ duration of AP) → heart cannot summate contractions

Electrocardiogram (ECG/EKG)

  • Surface recording of electrical events (not mechanical)
    • P wave: atrial depolarization
    • QRS complex: ventricular depolarization (+ atrial repolarization)
    • T wave: ventricular repolarization
  • Correlation with sounds: S₁ just after QRS; S₂ at start of T

Structure of Blood Vessels

  • Tunica interna: endothelium + basement membrane + elastin
  • Tunica media: smooth muscle (thicker in arteries)
  • Tunica externa: CT
  • Only capillaries = endothelium only → site of exchange

Arteries

  • Elastic (conducting): elastin; expand (systole) & recoil (diastole) → dampen pulse pressure
  • Muscular & arterioles: resistance vessels; greatest pressure drop; precapillary sphincters regulate flow; some arteriovenous anastomoses bypass capillaries

Capillary Types

  • Continuous: tight; small pores; muscle, lung, adipose
  • Fenestrated: wide pores; kidneys, endocrine, intestines
  • Discontinuous (sinusoids): large gaps; liver, spleen, marrow

Veins