Neurotransmission:

1. Introduction to Neurotransmission

  • The human brain has approximately 100 billion neurons.

  • Neurons communicate within and between each other.

  • Communication happens through synaptic transmission.

  • Two types of synapses: electrical and chemical.

2. Structure of a Neuron

Main Components:

  1. Dendrites – Receive information from other neurons (like antennas).

  2. Soma (Cell Body) – Processes information.

  3. Axon – Sends information as an electrical signal (action potential).

  4. Axon Terminals (Terminal Boutons) – Release neurotransmitters to communicate with other neurons.

Neuronal Membrane:

  • Separates intracellular (inside the cell) and extracellular (outside the cell) environments.

  • Composed of a lipid bilayer with protein structures that control what enters and exits.

3. The Synapse (Neuron-to-Neuron Communication)

Types of Synapses

  1. Electrical Synapses (Rare in adult mammals):

    • Found in the retina.

    • Neurons connected directly via gap junctions (small channels).

    • Ions move freely between cells.

    • Very fast transmission.

  2. Chemical Synapses (Common in the brain):

    • Neurons communicate by releasing neurotransmitters.

    • Involves a small gap called the synaptic cleft.

    • Slower but more versatile.

4. Steps of Chemical Neurotransmission

  1. Neurotransmitter Synthesis – Neurotransmitters are made in the neuron.

  2. Storage – Stored in vesicles in the axon terminal.

  3. Action Potential – An electrical signal travels down the axon.

  4. Calcium (Ca²⁺) Channels Open – Voltage-gated calcium channels let Ca²⁺ into the neuron.

  5. Vesicle Movement & Docking – Vesicles move to the membrane and get ready to release neurotransmitters.

  6. Exocytosis – Neurotransmitters are released into the synaptic cleft.

  7. Neurotransmitter Binding – Neurotransmitters bind to receptors on the next neuron.

  8. Neurotransmitter Inactivation – Neurotransmitters are removed by:

    • Reuptake – Taken back into the neuron.

    • Enzyme Breakdown – Broken down by enzymes.

    • Diffusion – Move away from the synapse.

5. Neurotransmitters & Their Functions

A. Excitatory vs. Inhibitory Neurotransmitters

  • Excitatory → Increases likelihood of firing (e.g., Glutamate).

  • Inhibitory → Decreases likelihood of firing (e.g., GABA).

B. Types of Neurotransmitters

Class

Example

Function

Amino Acids

Glutamate, GABA

Fast synaptic transmission

Monoamines

Dopamine, Serotonin

Mood, motivation, cognition

Acetylcholine (ACh)

Acetylcholine

Learning, memory, muscle movement

Neuropeptides

Endorphins

Pain relief, stress response

 

6. Neurotransmitter Receptors

A. Ionotropic Receptors (Fast-Acting)

  • Directly open ion channels.

  • Cause an immediate change in neuron activity.

  • Example:

    • Glutamate Receptors (Excitatory) → Allow Na⁺ into the neuron → Depolarization (EPSP).

    • GABA Receptors (Inhibitory) → Allow Cl⁻ into the neuron → Hyperpolarization (IPSP).

B. Metabotropic Receptors (Slow & Amplified Response)

  • Work through G-proteins and second messengers.

  • Cause slower but more complex effects.

  • Example:

    • GABA B Receptor (Inhibitory).

    • Dopamine & Serotonin Receptors.

 

AMPA Receptors

  • Primary function: Rapid excitatory neurotransmission.

  • Activation:

    • When glutamate binds, the channel immediately opens, allowing Na⁺ to enter and K⁺ to leave.

    • This leads to depolarization and an excitatory postsynaptic potential (EPSP).

  • Role in synaptic transmission:

    • AMPA receptors mediate fast transmission in the central nervous system.

    • Their quick kinetics make them crucial for rapid signaling.

NMDA Receptors

  • Primary function: Synaptic plasticity, learning, and memory.

  • Activation:

    • Binding of glutamate alone is not enough.

    • At resting membrane potential (-65 mV), Mg²⁺ blocks the NMDA receptor channel.

    • When the neuron is depolarized (e.g., by AMPA receptor activation), Mg²⁺ is removed, allowing ions to pass.

  • Ion selectivity: Unlike AMPA, NMDA receptors allow Ca²⁺ influx, which plays a major role in LTP (long-term potentiation).

  • Role in synaptic transmission:

    • NMDA receptors help in strengthening synapses (important for learning and memory).

    • Since NMDA receptors remain open longer, they contribute to prolonged excitatory effects.

Differences between AMPA & NMDA:

Feature

AMPA Receptor

NMDA Receptor

Type

Ionotropic glutamate receptor

Ionotropic glutamate receptor

Main Function

Fast synaptic transmission

Slow synaptic transmission & synaptic plasticity

Ion Permeability

Na⁺ (sodium) and K⁺ (potassium)

Na⁺ (sodium), K⁺ (potassium), and Ca²⁺ (calcium)

Activation

Glutamate binding directly opens the channel

Requires both glutamate & membrane depolarization

Voltage Dependence

Not voltage-dependent

Blocked by Mg²⁺ at resting membrane potential (-65 mV)

Opening Speed

Fast opening & closing (~1 ms)

Slow opening & closing (~10-50 ms)

Role in Synaptic Transmission

Mediates immediate excitatory signals

Involved in learning, memory, and long-term potentiation (LTP)

Requirement for Co-Activation

No co-agonist required

Requires Glycine (or D-Serine) as a co-agonist

Receptor Antagonists

CNQX, DNQX

APV (2-amino-5-phosphonovaleric acid)

Kinetics

Opens quickly, closes quickly

Opens more slowly, stays open longer

Long-Term Effects

Short-term excitatory responses

Important for synaptic plasticity & learning (LTP/Long-Term Depression - LTD)

Similarities of AMPA & NMDA:

Feature

AMPA & NMDA Receptors (Similarities)

Receptor Type

Both are ionotropic glutamate receptors (ligand-gated ion channels).

Neurotransmitter

Both are activated by glutamate, the main excitatory neurotransmitter in the brain.

Location

Both are found in the postsynaptic membrane of excitatory synapses in the central nervous system.

Ion Flux

Both allow Na⁺ (sodium) influx and K⁺ (potassium) efflux when activated.

Function

Both contribute to excitatory postsynaptic potentials (EPSPs), leading to depolarization.

Role in Synaptic Transmission

Both are essential for neuronal communication, learning, and synaptic plasticity.

Expression

Both receptors are widely expressed in the brain, especially in the hippocampus (important for learning and memory).

Structure

Both have four subunits forming a central ion channel.

Pharmacology

Both have specific agonists and antagonists that modulate their activity.

 

7. Specific Neurotransmitters & Their Pathways

A. Glutamate (Excitatory)

  • Main excitatory neurotransmitter in the CNS.

  • Activates AMPA, NMDA, and Kainate receptors.

  • Excessive glutamate can lead to excitotoxicity, causing brain damage (e.g., stroke, chronic stress).

B. GABA (Inhibitory)

  • Main inhibitory neurotransmitter.

  • GABA A Receptors (Ionotropic) → Open Cl⁻ channels (Fast inhibition).

  • GABA B Receptors (Metabotropic) → Work via G-proteins (Slow inhibition).

  • Drugs that increase GABA include:

    • Benzodiazepines (Valium, Xanax) – Reduce anxiety.

    • Alcohol – Enhances inhibition.

    • Barbiturates – Used for sedation.

C. Dopamine (Reward & Movement)

  • Found in three main pathways:

    1. Nigrostriatal System – Movement control (Parkinson’s disease).

    2. Mesolimbic System – Reward & addiction (Drugs increase dopamine here).

    3. Mesocortical System – Cognition & emotion (Schizophrenia-related).

  • Drugs affecting dopamine:

  • Cocaine & Amphetamines → Block dopamine reuptake (stimulant effects).

  • L-DOPA → Increases dopamine in Parkinson’s patients.

D. Serotonin (Mood & Emotion)

  • Found in the Raphe nuclei of the brainstem.

  • Functions in:

    • Mood & depression.

    • Sleep & appetite.

    • Pain perception.

  • Drugs affecting serotonin:

    • SSRIs (e.g., Prozac) → Block serotonin reuptake (antidepressant).

    • MDMA (Ecstasy) → Releases more serotonin (euphoria, empathy)

 

8. Drug Effects on Neurotransmission

Drug

Action

Neurotransmitter Affected

Benzodiazepines (e.g., Valium)

Enhance GABA action

GABA

Alcohol

Enhances GABA, blocks glutamate

GABA, Glutamate

Cocaine

Blocks dopamine reuptake

Dopamine

Amphetamines

Reverses dopamine transporters

Dopamine

SSRIs (e.g., Prozac)

Block serotonin reuptake

Serotonin

MDMA (Ecstasy)

Releases serotonin

Serotonin

 

 

Key Takeaways