1\. Tight junction: formed by the fusion of the outermost layers of the plasma membranes of adjoining cells. The matrix-filled space between cells is lost at the site of a tight junction. For centrally placed cells, the fusion occurs as a strip that wraps around the entire circumference of the cell like a belt. In this way, an impenetrable barrier is formed that prevents the passage of substances from the luminal end to the basal end of the cell and vice versa. Only by passing through the body of the cell can substances pass through the epithelial layer. Tight junctions are found in tissues in which there can be no leaks—for example, in the urinary bladder, where urine is held, or in the digestive tract, where tight junctions play a critical role in preventing the leakage of digestive enzymes into the bloodstream.
2\. Desmosome: strong, welded plaque that connects the plasma membranes of adjacent cells. The bond is a mechanical coupling formed by filaments that interlock with one another, just as plastic fibers do in Velcro. Tonofilaments, or intermediate filaments, may also extend from the desmosomic plaque into the cytoplasm of each cell like anchors, forming stabilizing bases for the membrane junction. In this way, desmosomes form tough bonds between cells and therefore are found most commonly in tissues that undergo repeated episodes of tension and stretching, such as the skin, heart, and uterus.
3\. Hemidesmosome: junctions that look like half-desmosomes and link epithelial cells to the basement membrane.
4\. Gap junction: made of tubular channel proteins called *connexons* and extends from the cytoplasm of one cell to the cytoplasm of another. These transmembrane proteins allow the exchange and passage of ions and nutrients (e.g., nucleotides, sugars, and amino acids) from one cell to another. Gap junctions are most commonly found in intestinal epithelial cells, the heart, and smooth muscle tissue. The function of gap junctions in epithelial cells is not yet fully understood, but their ability to quickly transport electrical signals from one cell to another explains their presence in cardiac and smooth muscle cells, where they help coordinate contraction.