1/17
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Linear regression
\hat Y = \hat\beta1 X + \hat\beta0
Linreg : \hat\beta_1
\frac{COV(X,Y)}{VAR(X)}=r\times\frac{\sigma_Y}{\sigma_X}
Linreg : \hat\beta_0
\mu_Y - \hat\beta_1\mu_X
MAE
\sum{i=1}^{n} \vert yi - \hat{y}_i \vert ^2
RSS = SSE
\sum{i=1}^{n} \big( \hat{y}i - \bar{y}_i \big)^2
Multilinreg : \hat Y
\sum\hat\beta_i X_i + \hat\beta_0
TSS = MSE = MSD
\sum^n{i=1}(yi-\bar y_i)^2
RSE
\sqrt \frac{SSE}{n-2}
R^2
1 - \frac{RSS}{TSS}
RMSE = RMSD
\sqrt{\frac{1}{n} \sum{i=1}^{n} \big( yi - \hat{y}_i \big)^2}
Binary logreg
\frac{\exp (\beta_0 + \sum\hat\beta_i Xi)}{1+ \exp (\beta_0 + \sum\hat\beta_i Xi)}
Classifier
KNN, LVQ, Naive Bayes, Decision Tree
Accuracy
TP + TN / nb predict
Recall ( 1 = min FN)
TP / TP+FN
FPRate
FP / TN+FP
specificity (TNRate)
1 - FPR
precision (1 = min FP)
TP / TP+FP
F-Measure
(2 x precision x recall) / (precision x recall)