Geometry Unit 2 quiz

0.0(0)
studied byStudied by 5 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/20

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

21 Terms

1
New cards

What does Postulate 1-1

Through any two points, there is exactly one line.

2
New cards

Postulate 1-2

If 2 lines intersect it will be at exactly one point

3
New cards

Postulate 1-3

If 2 plains intersect it will be at exactly one line

4
New cards

Postulate 1-4

Through any 3 non collinear points there is exactly one plain

5
New cards

Postulates / Axiom

Statements that are true without proof

6
New cards

Properties

Algebraic rules used in proofs

7
New cards

Theorems

Statements that can be proven true

8
New cards

Substitution Property

If A = B then A can go in for B in any equation

9
New cards

Transitive property

If A = B and B = C then A=C

10
New cards

Addition, subtraction, multiplication, division, properties of equality

Performing an operation with a constant term on both sides of an equation creates and equivalent equation. 

11
New cards

Angle addition postulate

In a given angle ∠XYZ where point Q lies on the interior, m∠XYQ + m∠QYZ = m∠XYZ.

<p><span style="background-color: inherit; color: windowtext;">In a given angle </span><span style="background-color: inherit;">∠XYZ</span><span style="background-color: inherit; color: windowtext;"> where point Q lies on the interior, </span><span style="background-color: inherit;">m∠XYQ + m∠QYZ = m∠XYZ</span><span style="background-color: inherit; color: windowtext;">.</span></p>
12
New cards

Linear pair theorem

All linear pairs are supplementary

<p>All linear pairs are supplementary</p>
13
New cards

Vertical angles theorem

Nonadjacent angles formed by intersecting lines are congruent

<p><span style="background-color: inherit; color: windowtext;">Nonadjacent angles formed by intersecting lines are congruent</span></p>
14
New cards

Corresponding angles postulate

If a transversal intersects two parallel lines,  

Then corresponding angles are congruent

<p><span style="background-color: inherit; color: windowtext;">If a transversal intersects two parallel lines,&nbsp;</span><span style="line-height: 47px; color: windowtext;">&nbsp;</span></p><p class="Paragraph SCXO232850957 BCX8" style="text-align: left;"><span style="background-color: inherit; color: windowtext;">Then corresponding angles are congruent</span></p>
15
New cards

Converse Corresponding Angles Postulate

If corresponding angles are congruent,  

Then the lines intersected by a transversal are parallel

<p><span style="background-color: inherit; color: windowtext;">If corresponding angles are congruent,&nbsp;</span><span style="line-height: 47px; color: windowtext;">&nbsp;</span></p><p class="Paragraph SCXO142493223 BCX8" style="text-align: left;"><span style="background-color: inherit; color: windowtext;">Then the lines intersected by a transversal are parallel</span></p>
16
New cards

Alternate Interior Angles Theorem

If a transversal intersects two parallel lines,  

Then alternate interior angles are congruent

<p><span style="background-color: inherit; color: windowtext;">If a transversal intersects two parallel lines,&nbsp;</span><span style="line-height: 47px; color: windowtext;">&nbsp;</span></p><p class="Paragraph SCXO25775504 BCX8" style="text-align: left;"><span style="background-color: inherit; color: windowtext;">Then alternate interior angles are congruent</span></p>
17
New cards

Converse Alternate Interior Angles Theorem

If alternate interior angles are congruent,  

Then the lines intersected by the transversal are parallel

<p><span style="background-color: inherit; color: windowtext;">If alternate interior angles are congruent,&nbsp;</span><span style="line-height: 47px; color: windowtext;">&nbsp;</span></p><p class="Paragraph SCXO35086451 BCX8" style="text-align: left;"><span style="background-color: inherit; color: windowtext;">Then the lines intersected by the transversal are parallel</span></p>
18
New cards

Alternate Exterior Angles Theorem

If a transversal intersects two parallel lines,  

Then alternate exterior angles are congruent

<p><span style="background-color: inherit; color: windowtext;">If a transversal intersects two parallel lines,&nbsp;</span><span style="line-height: 47px; color: windowtext;">&nbsp;</span></p><p class="Paragraph SCXO219109704 BCX8" style="text-align: left;"><span style="background-color: inherit; color: windowtext;">Then alternate exterior angles are congruent</span></p>
19
New cards

Converse Alternate Exterior Angles Theorem

If alternate exterior angles are congruent,  

Then the lines intersected by the transversal are parallel

<p><span style="background-color: inherit; color: windowtext;">If alternate exterior angles are congruent,&nbsp;</span><span style="line-height: 47px; color: windowtext;">&nbsp;</span></p><p class="Paragraph SCXO102356546 BCX8" style="text-align: left;"><span style="background-color: inherit; color: windowtext;">Then the lines intersected by the transversal are parallel</span></p>
20
New cards

Transversal

A line intersecting a system of lines

21
New cards

Postulate

Reasoning for a belief