Lec 4 Metabolism and Cell energy

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/55

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

56 Terms

1
New cards

The reactions inThe reactions in the pathways of glycolysis and the citric acid cycle break down glucose into smaller molecules. Therefore, these pathways the pathways

  • Catabolic pathways

  • Catabolism is the breakdown of molecules into smaller units, producing ATP

2
New cards

What happens to bonds within chemical reactions?

  • During chemical reaction, atoms keep chemical identity but the bonds change 

3
New cards

What can occur in human bloodstream due to CO2 (B)?

  • cells break down glucose → produce carbon dioxide.

  • In animals, this carbon dioxide diffuses out of cells and into the blood.

  • Rather than remaining dissolved in solution, most of the carbon dioxide is converted into carbonic acid.

  • In an aqueous (watery) environment like the ocean or the blood: carbonic acid exists as bicarbonate ions ( HCO 3 − ) and protons ( H + ) .

4
New cards

How is carbonic acid formed?

  • CO2 and water react to form carbonic acid 

  • CO2 covalently bonded with double bonds

  • H20 covalent bonded to O with two single bonds

    • single covalent bond connecting Carbon and oxygen in CO2 and single covalent bond connecting hydrogen and oxygen in H20 are broken

    • Covalent bond is formed between carbon of CO2 and oxygen of H20, and between one oxygen of CO2 and one hydrogen of H20

  • Happens in Aquarius atoms -> oceans become more acidic because more CO2 dissolved in water --> increased carbonic acid 

  • reaction is reversible 

  • atoms stay the same, but bonds change

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>CO2 and water react to form carbonic acid</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p><span style="line-height: 19.55px; color: windowtext;"><span>CO2 covalently bonded with double bonds</span></span></p></li><li><p><span style="line-height: 19.55px; color: windowtext;"><span>H20 covalent bonded to O with two single bonds</span></span></p><ul><li><p class="Paragraph SCXO146138611 BCX0" style="text-align: left;">single covalent bond connecting Carbon and oxygen in CO2 and single covalent bond connecting hydrogen and oxygen in H20 are broken</p></li><li><p class="Paragraph SCXO146138611 BCX0" style="text-align: left;">Covalent bond is formed between carbon of CO2 and oxygen of H20, and between one oxygen of CO2 and one hydrogen of H20</p></li></ul></li><li><p class="Paragraph SCXO146138611 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Happens in Aquarius atoms -&gt; oceans become more acidic because more CO2 dissolved in water --&gt; increased carbonic acid</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO146138611 BCX0" style="text-align: left;"><span style="line-height: 19.55px; color: windowtext;"><span>reaction is reversible&nbsp;</span></span></p></li><li><p class="Paragraph SCXO146138611 BCX0" style="text-align: left;"><span style="line-height: 19.55px; color: windowtext;"><span>atoms stay the same, but bonds change</span></span></p></li></ul><p></p>
5
New cards

What are covalent bonds?

  • A chemical bond formed by a shared pair of electrons holding two different atoms together.

  • Covalent: sharing e-

<ul><li><p><span><span>A chemical bond formed by a shared pair of electrons holding two different atoms together.</span></span></p></li><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Covalent: sharing e-</span></span><span style="line-height: 19.55px; color: windowtext;"><span> </span></span></p></li></ul><p></p>
6
New cards

What are ionic bonds?

  • A chemical bond in which two ions with opposite charges associate with each other due to their difference in electronegativity.

  • Not shared from one atom to another: breaking and forming of ionic bonds

<ul><li><p><span><span>A chemical bond in which two ions with opposite charges associate with each other due to their difference in electronegativity.</span></span></p></li><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Not shared from one atom to another: breaking and forming of ionic bonds</span></span><span style="line-height: 19.55px; color: windowtext;"><span> </span></span></p></li></ul><p></p>
7
New cards

What kind of bond is there in the formation of carbonic acid?

  • Involve breaking and creating covalent bonds 

8
New cards

What are free radicals (Reactive Oxygen Species)?

  • Atoms or molecules in unpaired e - --> unstable and highly reactive (need more to become stable) 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Atoms or molecules in unpaired e - --&gt; unstable and highly reactive (need more to become stable)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul><p></p>
9
New cards

How are free radicals shown in oxygen?

  • Oxygen: 8 e- to be stable (not a free radical)

    • Loses e- is becomes unstable and wants to pick e' from the env

    • Common free radical in body

  • Single oxygen atom -> 6 (free radical)

    • Need to share 2 e- to be stable

    • b/c so much oxygen -> free radicals common in body and env

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Oxygen: 8 e- to be stable&nbsp;(not a free radical)</span></span><span style="line-height: 19.55px; color: windowtext;"><span> </span></span></p><ul><li><p class="Paragraph SCXO199140978 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Loses e- is becomes unstable and wants to pick e' from the env</span></span><span style="line-height: 19.55px; color: windowtext;"><span> </span></span></p></li><li><p class="Paragraph SCXO199140978 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Common free radical in body</span></span><span style="line-height: 19.55px; color: windowtext;"><span> </span></span></p></li></ul></li><li><p class="Paragraph SCXO199140978 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Single oxygen atom -&gt; 6</span></span><span style="line-height: 19.55px; color: windowtext;"><span> (free radical)</span></span></p><ul><li><p class="Paragraph SCXO199140978 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Need to share 2 e- to be stable</span></span><span style="line-height: 19.55px; color: windowtext;"><span> </span></span></p></li><li><p class="Paragraph SCXO199140978 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>b/c so much oxygen -&gt; free radicals common in body and env</span></span><span style="line-height: 19.55px; color: windowtext;"><span> </span></span></p></li></ul></li></ul><p></p>
10
New cards

What do Reactive Oxygen species (free radicals) lead to?

  • Free radical steal e- from other molecules -> cause dmg to cells and tissues 

  • Naked eyes 

    • Apple slice oxidized (dmged from oxidation (lose of e-)) 

  • Human aging caused by free radicals 

    • Using protection on skin and damaged by free radicals 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Free radical steal e- from other molecules -&gt; cause dmg to cells and tissues</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO105442103 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Naked eyes</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO105442103 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Apple slice oxidized (dmged from oxidation (lose of e-))</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li><li><p class="Paragraph SCXO105442103 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Human aging caused by free radicals</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO105442103 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Using protection on skin and damaged by free radicals</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul><p></p>
11
New cards

What are antioxidants?

  • Antioxidants provide e- and serve as reducing agent and limits oxidation dmg to biological structures 

  • More e- -> the more capable they are to deal with oxidation 

    • Have a lot of e- to give 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Antioxidants provide e- and serve as reducing agent and limits oxidation dmg to biological structures</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO15306599 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>More e- -&gt; the more capable they are to deal with oxidation</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO15306599 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Have a lot of e- to give</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul><p></p>
12
New cards

What is a popular antioxidant?

  • Selenium 

    • Popular health supplement 

    • Has a lot of e- it can give  

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Selenium</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO258673814 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Popular health supplement</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO258673814 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Has a lot of e- it can give&nbsp;</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul><p></p>
13
New cards

How does selenium act as an antioxidant (slide was confusing)

 

  • Fungal species: ability to use selenium and incorporate it to produce proteins -> specialized protein (selenoprotei) 

    • Protein can be used as an antioxidant b/c a lot of e- 

    • Compartments: sulfuer? 

    • Selenprotien can give e- 

  • Potential to develop health products (still new) 

14
New cards

What is Gibbs free energy?

  • the amount of energy in a system available to do work

    • difference between products and reactents

15
New cards

What are endergonic reactions?

  • Reactions with a positive ΔG require an input of energy

  • Products have more free energy than reactant: ΔG is positive 

    • Positive: requires input of energy (endergonic reaction) 

  • Endergonic (need ATP to start) -> non-spontaneous (need energy to activate it) 

<ul><li><p>Reactions with a positive ΔG require an input of energy</p></li><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Products have more free energy than reactant: </span></span>ΔG<span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span> is positive</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO69797370 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Positive: requires input of energy (endergonic reaction)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li><li><p class="Paragraph SCXO69797370 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Endergonic (need ATP to start) -&gt; non-spontaneous (need energy to activate it)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul><p></p>
16
New cards

What are exergonic reactions?

  • Reactions with a negative ΔG release energy

  • Reactant has more free energy -> Negative 

    • Negative: release energy (exergonic reaction) 

  • Exergonic -> spontaneous (does not need extra energy to activate) 

<ul><li><p>Reactions with a negative ΔG release energy</p></li><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Reactant has more free energy -&gt; Negative</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO177873000 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Negative: release energy (exergonic reaction)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li><li><p class="Paragraph SCXO177873000 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Exergonic -&gt; spontaneous (does not need extra energy to activate)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul><p></p>
17
New cards

What is enthalpy (slide is confusing)?

  • The total amount of energy in a system.

    • interested in the energy available for a cell to do work, or G

  • Total energy or enthalpy (H) = energy available to do work (G) + energy lost to entropy (TS)

    • T- absolute temperature in Kelvin

    • S - entropy

  • G = H - TS

18
New cards

What is the equation of ΔG?

  • 2nd law of thermodynamics 

  • Energy lost due to randomness 

  • Temperature is constant 

  • compare the total energy and entropy of the reactants with the total energy and entropy of the products to see if there is energy available to do work.

  • useful way to see if a chemical reaction takes place spontaneously and whether net energy is required or released

<ul><li><p class="Paragraph SCXO234058148 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>2</span><sup><span>nd</span></sup><span> law of thermodynamics</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO234058148 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Energy lost due to randomness</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO234058148 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Temperature is constant</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO234058148 BCX0" style="text-align: left;"><span><span>compare the total energy and entropy of the reactants with the total energy and entropy of the products to see if there is energy available to do work.</span></span></p></li><li><p class="Paragraph SCXO234058148 BCX0" style="text-align: left;"><span><span>useful way to see if a chemical reaction takes place spontaneously and whether net energy is required or released</span></span></p></li></ul><p></p>
19
New cards

What is ΔG in catabolic reactions?

  • macromolecules(have higher energy level) 

  • G is negative 

    • reactants have more energy that products

    • decrease in enthalpy, products have more subunits → more disorder = higher entropy 

  • Catabolic reaction is spontaneous and release energy (ATP) 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>macromolecules(have higher energy level)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO233838685 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>G is negative</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO233838685 BCX0" style="text-align: left;"><span style="line-height: 19.55px; color: windowtext;"><span>reactants have more energy that products</span></span></p></li><li><p class="Paragraph SCXO233838685 BCX0" style="text-align: left;"><span style="line-height: 19.55px; color: windowtext;"><span>decrease in enthalpy, products have more subunits → </span></span><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>more disorder = higher entropy</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li><li><p class="Paragraph SCXO233838685 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Catabolic reaction is spontaneous and release energy (ATP)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul><img src="https://knowt-user-attachments.s3.amazonaws.com/69d30852-57dc-4e02-aac6-26782dcc3dfb.png" data-width="100%" data-align="center"><p></p>
20
New cards

What is ΔG in anabolic reactions?

  • Positive G 

    • Energy in products (bigger molecules) higher than reactants

    • Increase ΔH (total energy) 

    • Products more organized -> decrease entropy 

  • Requires energy input 

  • non-spontaneous 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Positive G</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p>Energy in products (bigger molecules) higher than reactants</p></li><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Increase </span></span>Δ<span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>H (total energy)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO267967336 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Products more organized -&gt; decrease entropy</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li><li><p class="Paragraph SCXO230854358 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Requires energy input</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO230854358 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>non-spontaneous</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul><img src="https://knowt-user-attachments.s3.amazonaws.com/80efbd4a-3043-4086-8fd8-95c411265e5b.png" data-width="100%" data-align="center"><p></p>
21
New cards

What is energetic coupling?

  • Reactions in the body can have multiple stops 

  • is a process in which spontaneous reactions (ΔG < 0) drive a non-spontaneous reaction (ΔG > 0)

  • If sum of reactions have a negative G --> reaction will also be spontaneous  

    • Reaction 2 has enough energy to activate reaction 1 -> coupled reaction can still occur 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Reactions in the body can have multiple stops</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p>is a process in which spontaneous reactions (ΔG &lt; 0) drive a non-spontaneous reaction (ΔG &gt; 0)</p></li><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>If sum of reactions have a negative G --&gt; reaction will also be spontaneous&nbsp;</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO151747460 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Reaction 2 has enough energy to activate reaction 1 -&gt; coupled reaction can still occur</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul><p></p>
22
New cards

What do hydrolysis reactions often do?

  • break down polymers into their subunits → one product gains a proton and the other gains a hydroxyl group.

23
New cards

What is hydrolysis of ATP?

  • ATP + H20 → Pi(inorganic phosphate)(HPO4-2) + ADP

  • chemical reaction in which a water molecule is split into a proton (H + ) and a hydroxyl group (OH − ) .

  • Exergonic: 

    • less free energy in the products than in the reactants.

    • Delta H

      • Phosphate groups of ATP negative → ATP has 3

      • ADP has 2 → more stable (contains less chemical energy in its bonds) than ATP → value of Delta H neg

    • Delta S: positive

      • Single molecule of ATP broken into two molecules (ADP and Pi) 

    • Delta G

      • spontaneous and releases energy 

<ul><li><p>ATP + H20 → Pi(inorganic phosphate)(HPO4-2) + ADP</p></li><li><p><span>chemical reaction in which a water molecule is split into a proton (H + ) and a hydroxyl group (OH − ) .</span></p></li><li><p><span>Exergonic:&nbsp;</span></p><ul><li><p><span>less free energy in the products than in the reactants.</span></p></li><li><p>Delta H</p><ul><li><p><span>Phosphate groups of ATP negative → ATP has 3</span></p></li><li><p><span>ADP has 2 → more stable (contains less chemical energy in its bonds) than ATP → value of Delta H neg</span></p></li></ul></li><li><p>Delta S: positive</p><ul><li><p>Single molecule of ATP broken into two molecules (ADP and Pi)&nbsp;</p></li></ul></li><li><p>Delta G</p><ul><li><p>spontaneous and releases energy&nbsp;</p></li></ul></li></ul></li></ul><p></p>
24
New cards

How does energetic coupling occur in ATP hydrolysis?

  • ATP hydrolysis and formation of glucose 6 phosphate in cellular respiration 

  • Inorganic phosphate shared between the reactions  

    • Product of one has to be used as input to the next reaction for this to occur 

  • Reaction formed by the coupling will still occur and be spontaneous 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>ATP hydrolysis and formation of glucose 6 phosphate in cellular respiration</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO42345758 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Inorganic phosphate shared between the reactions </span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO42345758 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Product of one has to be used as input to the next reaction for this to occur</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li><li><p class="Paragraph SCXO42345758 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Reaction formed by the coupling will still occur and be spontaneous</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul><p></p>
25
New cards

How does  energetic coupling occur for hydrolysis of phosphoenolpyruvate?

  • Hydrolysis of phosphenoalpyruavte that drives synthesis of ATP 

  • Cell needs to replenish ATP to carry out additional chemical reactions 

  • Inorganic phosphate both input and output -> need phosphate group to synthesize ATP

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Hydrolysis of phosphenoalpyruavte that drives synthesis of ATP</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p><span style="line-height: 19.55px; color: windowtext;"><span>Cell needs to replenish ATP to carry out additional chemical reactions&nbsp;</span></span></p></li></ul><ul><li><p class="Paragraph SCXO262987806 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Inorganic phosphate both input and output -&gt; need phosphate group to synthesize ATP</span></span></p></li></ul><p></p>
26
New cards

What is the ΔG of ATP considered?

  • Allows ATP to drive reaction when being abundant or can be managed when low (intermediate) 

  • Reaction of hydrolysis of phosphoenolpyruvate have more negative G than ATP hydrolysis and first two reaction -> produce the ATP by donating a phosphate group to ADP -> will synthesize ATP 

    • ATP hydrolysis has an intermediate energy difference

  • Flow of reaction is indicated by yellow arrow 

  • When ATP is high -> drive other reaction with a less negative G than ATP hydrolysis 

    • Glucose will reactive a phosphate group from ATP -> form glucose 6 phosphate 

    • Flow: red arrows 

    • ATP is consumed and creates ADP and inorganic phosphate group 

<ul><li><p class="Paragraph SCXO187459446 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Allows ATP to drive reaction when being abundant or can be managed when low (intermediate)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO84379363 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Reaction of hydrolysis of </span></span>phosphoenolpyruvate&nbsp;<span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>have more negative G than ATP hydrolysis and first two reaction -&gt; produce the ATP by donating a phosphate group to ADP -&gt; will synthesize ATP</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO84379363 BCX0" style="text-align: left;">ATP hydrolysis has an intermediate energy difference</p></li></ul></li><li><p class="Paragraph SCXO84379363 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Flow of reaction is indicated by yellow arrow</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO84379363 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>When ATP is high -&gt; drive other reaction with a less negative G than ATP hydrolysis</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO84379363 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Glucose will reactive a phosphate group from ATP -&gt; form glucose 6 phosphate</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO84379363 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Flow: red arrows</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO84379363 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>ATP is consumed and creates ADP and inorganic phosphate group</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul><p></p>
27
New cards

What is ATP and ADP cycling?

  • reactions that have a Δ 𝐺 more negative than that of ATP hydrolysis transfer a phosphate group to ADP by energetic coupling

  • reactions that have a less negative Δ 𝐺 receive a phosphate group from ATP by energetic coupling.

  • Therefore, ADP accepts a phosphate group (and energy), and ATP donates a phosphate group (and energy) as it cycles between ATP and ADP.

  • ATP–ADP cycle is at the core of energetic coupling between catabolic and anabolic reactions

<ul><li><p><span><span>reactions that have a Δ 𝐺 more negative than that of ATP hydrolysis transfer a phosphate group to ADP by energetic coupling</span></span></p></li><li><p><span><span>reactions that have a less negative Δ 𝐺 receive a phosphate group from ATP by energetic coupling. </span></span></p></li><li><p><span><span>Therefore, ADP accepts a phosphate group (and energy), and ATP donates a phosphate group (and energy) as it cycles between ATP and ADP. </span></span></p></li><li><p><span><span>ATP–ADP cycle is at the core of energetic coupling between catabolic and anabolic reactions</span></span></p></li></ul><p></p>
28
New cards

Why is ATP useful?

  • Dynamic system that depends on wether there is enough ATP or not

    • Body can use different reactions to create or consume ATP

    • Hydrolysis reaction is intermediate

  • Other molecules are not intermediate so they cannot be used as currency of energy 

  • intermediate ΔG

    • 1st example: ATP is consumed

    • 2nd: ATP is synthesized 

      • ATP useful because it can consumed and synthesized

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Dynamic system that depends on wether there is enough ATP or not</span></span><span style="line-height: 19.55px; color: windowtext;"><span> </span></span></p><ul><li><p class="Paragraph SCXO84379363 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Body can use different reactions to create or consume ATP</span></span><span style="line-height: 19.55px; color: windowtext;"><span> </span></span></p></li><li><p class="Paragraph SCXO84379363 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Hydrolysis reaction is intermediate</span></span><span style="line-height: 19.55px; color: windowtext;"><span> </span></span></p></li></ul></li><li><p class="Paragraph SCXO84379363 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Other molecules are not intermediate so they cannot be used as currency of energy&nbsp;</span></span></p></li><li><p class="Paragraph SCXO84379363 BCX0" style="text-align: left;">intermediate ΔG</p><ul><li><p class="Paragraph SCXO187459446 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>1</span><sup><span>st</span></sup><span> example: ATP is consumed</span></span><span style="line-height: 19.55px; color: windowtext;"><span> </span></span></p></li><li><p class="Paragraph SCXO187459446 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>2</span><sup><span>nd</span></sup><span>: ATP is synthesized&nbsp;</span></span><span style="line-height: 19.55px; color: windowtext;"><span> </span></span></p><ul><li><p class="Paragraph SCXO187459446 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>ATP useful because it can consumed and synthesized</span></span><span style="line-height: 19.55px; color: windowtext;"><span>  </span></span></p></li></ul></li></ul></li></ul><p></p>
29
New cards

What does both exergonic and endergonic reactions both need?

  • all chemical reactions require an initial input of energy to proceed

  • exergonic: the energy released is more than the initial input of energy → net release of energy.

30
New cards

What is a transition state?

  • New compound forming -> brief transition state where old bonds are breaking and new bonds are forming 

  • Transition state (unstable) -> has lots of free energy 

  • highest free energy value = transition state

  • Example 

    • Carbonic acid formation from CO2 and water 

    • Both reactants are most stable than transition state 

    • Reaction requires input of energy to reach the transition state (EA) 

      • Need energy to put it two work 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>New compound forming -&gt; brief transition state where old bonds are breaking and new bonds are forming</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO85117905 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Transition state (unstable) -&gt; has lots of free energy</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO85117905 BCX0" style="text-align: left;"><span style="line-height: 19.55px; color: windowtext;"><span>highest free energy value = transition state</span></span></p></li><li><p class="Paragraph SCXO85117905 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Example</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO85117905 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Carbonic acid formation from CO2 and water</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO85117905 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Both reactants are most stable than transition state</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO85117905 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Reaction requires input of energy to reach the transition state (EA)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO85117905 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Need energy to put it two work</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul></li></ul><p></p>
31
New cards

What is activation energy (EA)?

  • all reactions require an input of energy to proceed

  • energy input necessary to reach the transition state

<ul><li><p>all reactions require an input of energy to proceed</p></li><li><p><span><span>energy input necessary to reach the transition state</span></span></p></li></ul><p></p>
32
New cards

What happens after the transition state is reached (b)?

  • the reaction proceeds

  • products are formed,

  • energy is released into the surroundings (the downhill portion of the curve)

<ul><li><p><span><span>the reaction proceeds</span></span></p></li><li><p><span><span> products are formed, </span></span></p></li><li><p><span><span>energy is released into the surroundings (the downhill portion of the curve)</span></span></p></li></ul><p></p>
33
New cards

What are enzymes?

  • protein catalysts that can increase the rate of biochemical reactions by stabilizing the transition state and decreasing free energy (decreasing curve)

  • accelerates the reaction by reducing E

    • lowers obstacle

  • Delta G is the same with and without the enzyme

<ul><li><p>protein catalysts that can increase the rate of biochemical reactions by stabilizing the transition state and decreasing free energy (decreasing curve)</p></li><li><p>accelerates the reaction by reducing E</p><ul><li><p>lowers obstacle</p></li></ul></li><li><p>Delta G is the same with and without the enzyme</p></li></ul><p></p>
34
New cards

What is a substrate?

In a chemical reaction catalyzed by an enzyme, the reactant is often referred to as the substrate

35
New cards

How does an enzyme decrease EA (I)?

  • Low Ea -> lower energy required for reaction to work 

  • Enzyme: product of proteins 

    • Catalyzes reaction by lowering EA 

  • Substrate (S) is converted to Product (P)

  • In presence of E → substrate forms couples with the enzyme (enzyme-substrate, ES)

  • ES converted to enzyme product (EP)

  • Last: complex disassociates and releases enzyme and product

  • Enzyme forms complex with substrate ES (enzyme-substrate complex) 

    • Requires less EA to start reaction 

    • Substrate is changed into different product (ES) -> structure also changes 

    • Substrate is converted into product while still working with enzyme complex -> change to EP (enzyme product complex) -> complex dissociate and release enzyme (impacts shape of product) 

    • Enzyme does not change, substrate of product changes 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Low Ea -&gt; lower energy required for reaction to work</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO117915271 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Enzyme: product of proteins</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO117915271 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Catalyzes reaction by lowering EA</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li><li><p class="Paragraph SCXO117915271 BCX0" style="text-align: left;">Substrate (S) is converted to Product (P)</p></li><li><p class="Paragraph SCXO117915271 BCX0" style="text-align: left;">In presence of E → substrate forms couples with the enzyme (enzyme-substrate, ES)</p></li><li><p class="Paragraph SCXO117915271 BCX0" style="text-align: left;">ES converted to enzyme product (EP)</p></li><li><p class="Paragraph SCXO117915271 BCX0" style="text-align: left;">Last: complex disassociates and releases enzyme and product</p></li><li><p class="Paragraph SCXO117915271 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Enzyme forms complex with substrate ES (enzyme-substrate complex)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO117915271 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Requires less EA to start reaction</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO117915271 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Substrate is changed into different product (ES) -&gt; structure also changes</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO117915271 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Substrate is converted into product while still working with enzyme complex -&gt; change to EP (enzyme product complex) -&gt; complex dissociate and release enzyme (impacts shape of product)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO117915271 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Enzyme does not change, substrate of product changes</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul><p></p>
36
New cards

What do specific interactions between enzyme and the substrate in the complex do?

  • stabilize the transition state → reduce activaiton energy

37
New cards

How are active sites formed?

  • Enzyme active site is small compared to enzyme itself 

    • Only need small cavity to combine with substrate 

    • active sits made of amino acids → only a few amino acids actually catalyze (b)

  • Active amino acids can be spaced far apart in peptide chain 

    • Peptide are synthesized will have few sites that will work an active site when folded together 

 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Enzyme active site is small compared to enzyme itself</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO4689147 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Only need small cavity to combine with substrate</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO4689147 BCX0" style="text-align: left;"><span style="line-height: 19.55px; color: windowtext;"><span>active sits made of amino acids → only a few amino acids actually catalyze (b)</span></span></p></li></ul></li><li><p class="Paragraph SCXO4689147 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Active amino acids can be spaced far apart in peptide chain</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO4689147 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Peptide are synthesized will have few sites that will work an active site when folded together</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul><p class="Paragraph SCXO4689147 BCX0" style="text-align: left;"><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><p></p>
38
New cards

Why are enzymes so large?

  • because each of these amino acids occupies a specific spatial position to align with the reactive group on the substrate.

  • If the few essential amino acids were part of a short peptide, the alignment of chemical groups between the peptide and the substrate would be difficult

    • the length of the bonds and the bond angles in the peptide would constrain its three-dimensional structure.

39
New cards

How is enzyme shape changed?

  • The enzyme active site binds the substrate and converts it to the product.

  • The interactions between the substrate and the active site will decrease the activation energy required for the reaction

  • Enzymes are proteins with active sites to facilities reactions 

    • ES complex will meet active site to combine with reactant  

      • Active site will change reactent to products 

    • Interactions between substrte and active site -> decreases EA 

  • Enzymes needed by many biological reactions -> not enough EA to make them happen → they go slower

<ul><li><p>The enzyme active site binds the substrate and converts it to the product.</p></li><li><p>The interactions between the substrate and the active site will decrease the activation energy required for the reaction</p></li><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Enzymes are proteins with active sites to facilities reactions</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO256017212 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>ES complex will meet active site to combine with reactant&nbsp;</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO256017212 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Active site will change reactent to products</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li><li><p class="Paragraph SCXO256017212 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Interactions between substrte and active site -&gt; decreases EA</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li><li><p class="Paragraph SCXO256017212 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Enzymes needed by many biological reactions -&gt; not enough EA to make them happen → they go slower</span></span></p></li></ul><p></p>
40
New cards

How does enzyme specificity work?

  • Enzyme specific for certain substrates (structure of active sites) 

    • induced fit mode: shape of substrate may influenced by binding to active site

    • fit becomes closer as substrate and enzyme interact → not rigid structures → mold to some degree to each other

  • Specificity of enzyme is the basis of biosensors / bioengineering 

  • Signals released when only the exact biological molecules can be detected  

    • Once they have identified and combined with certain molecule -> release signal 

    • Wrong binding -> cannot bind -> no following reaction -> no signal 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Enzyme specific for certain substrates (structure of active sites)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p>induced fit mode: shape of substrate may influenced by binding to active site</p></li><li><p>fit becomes closer as substrate and enzyme interact → not rigid structures → mold to some degree to each other</p></li></ul></li><li><p class="Paragraph SCXO117374795 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Specificity of enzyme is the basis of biosensors / bioengineering</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO117374795 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Signals released when only the exact biological molecules can be detected&nbsp;</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO117374795 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Once they have identified and combined with certain molecule -&gt; release signal</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO117374795 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Wrong binding -&gt; cannot bind -&gt; no following reaction -&gt; no signal</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul><p></p>
41
New cards

What is an activator?

  • A compound that increases the activity of an enzyme;

    • also, a protein that binds to a DNA sequence and turns on transcription.

42
New cards

What is an inhibitor?

  • A compound that decreases the activity of an enzyme.

43
New cards

What are the types of inhibitors? 

  • Reversible or irreversible depening on how they interact with enzyme 

  • Covalent or ionic bonds -> strong -> inhibition is irreversible and cause dmg 

  • Weak intermolecular -> reversable 

44
New cards

What is a competitive inhibitor?

  • binds to active site -> substate can not form enzyme substrate complex anymore -> reaction is inhibited 

    • Share same active site 

    • Usually similar structure as substrate to compete with it for active sites 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>binds to active site -&gt; substate can not form enzyme substrate complex anymore -&gt; reaction is inhibited</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO261385355 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Share same active site</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO261385355 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Usually similar structure as substrate to compete with it for active sites</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul><p></p>
45
New cards

What is an allosteric site?

a binding site on an enzyme or receptor that is distinct from the enzyme's active site

46
New cards

What is a non-competitive inhibitor?

  • active site + allosteric site

  • inhibitor binds with alternative site 

    • Usually have diff structure than substrate  

    • Binding of inhibitor to enzyme will change shape of enzyme 

      • Active site also changes 

    • Substrate not able to combine with active site 

  • Can be influenced by inhibitor 

<p></p><ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>active site + allosteric site</span></span></p></li><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>inhibitor binds with alternative site</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO98758187 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Usually have diff structure than substrate&nbsp;</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO98758187 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Binding of inhibitor to enzyme will change shape of enzyme</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO98758187 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Active site also changes</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li><li><p class="Paragraph SCXO98758187 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Substrate not able to combine with active site</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul><ul><li><p class="Paragraph SCXO98758187 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Can be influenced by inhibitor</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul><p></p>
47
New cards

What are allosteric enzymes?

  • an enzyme that is activated or inhibited when binding to another molecule changes its shape.

  • Enzymes that are regulated by molecules that bind at sites other than their active sites

48
New cards

What can the activity of allosteric sites be influenced by?

  • inhibitors a

  • activators

49
New cards

What role do allosteric enzymes play?

  • Allosteric enzymes play imp role in chemical regulations of reaction (and metabolic pathway) 

    • Reduce or stop amount of chemical reactions

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Allosteric enzymes play imp role in chemical regulations of reaction (and metabolic pathway)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO111642404 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Reduce or stop amount of chemical reactions</span></span></p></li></ul></li></ul><p class="Paragraph SCXO111642404 BCX0" style="text-align: left;"></p><p></p>
50
New cards

Allosteric enzyme example

  • bacterium has enough isoleucine → shut down pathway to not waste energy by synthesizing more → cell relies on enzyme inhibitor

  • synthesize of isoluencine (inhibitor), reactant is threonine

  • 5 reactions

    • P1-P4: intermediate products

  • Once enough isoleucine (product) is made -> whole process will be inhibited by product itself

    • Isolucine is allosteric inhibitor 

    • Extra isolunece will bind to first enzyme in path way (theorine dehydrates) at a site distinct from the active site

      • theorine = allosteric enzyme

    • binding of isoleucine -> changes shape of enzyme and inhibit further production from the beginning

  • Negative feedback: uses products as allosteric inhibitor to stop reaction from beginner

    • final product inhibits the first step of the reaction

51
New cards

What does the rate of reaction depend on (b)?

  • activity of threonine dehydratase = rate of the reaction → depends on the concentration of substrate

  • low concentration of threnonine = low reaction rate

  • high concentration = enzyme activity increases 

  • At a particular threshold, a small increase in threonine concentration results in a large increase in reaction rate.

  • Finally, when there is excess substrate, the reaction rate slows down.

52
New cards

Why are some mushrooms toxic to human beings?

  • Amatoxins are selective inhibitors of RNA polymerase II, which is a vital enzyme in the synthesis of messenger RNA (mRNA), microRNA, and small nuclear RNA (snRNA).

53
New cards

Why is RNA polymerase complex (Pol II) important?

  • RNP II important for transcription and protein production 

  • Cover image 

    • How RNP works in body to make RNA 

  • RNP II needs to bind directly to DNA template to make RNA 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>RNP II important for transcription and protein production</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO193826560 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Cover image</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO193826560 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>How RNP works in body to make RNA</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li><li><p class="Paragraph SCXO193826560 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>RNP II needs to bind directly to DNA template to make RNA</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul><p></p>
54
New cards

How does amatoxins work to be inhibitors?

  • Amatoxin (red) combine to RNP II -> enzyme cannot bind to DNA template (competitive inhibitor) 

  • Toxin can travel through stream and reach other organs -> dmg to liver, heart, brain 

    • Inhibition + organ failture = irreversible 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Amatoxin (red) combine to RNP II -&gt; enzyme cannot bind to DNA template (competitive inhibitor)</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO157996946 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Toxin can travel through stream and reach other organs -&gt; dmg to liver, heart, brain</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO157996946 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Inhibition + organ failture = irreversible</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul><p></p>
55
New cards

What is the phylogenetic analyses of RNP II?

  • Many polyphyletic becomes monophyletic 

  • RPP I and II have been used more and is more robust -> more popular 

<ul><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Many polyphyletic becomes monophyletic</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO55417186 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>RPP I and II have been used more and is more robust -&gt; more popular</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul><p></p>
56
New cards

What are mycotoxins?

  • a toxic secondary metabolite produced by fungi

  • Many fungi can product toxin 

  • Fungal tree of life 

    • Diversity produced from a handful of fungal species 

<ul><li><p>a toxic secondary metabolite produced by fungi</p></li><li><p><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Many fungi can product toxin</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li><li><p class="Paragraph SCXO45488363 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Fungal tree of life</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p><ul><li><p class="Paragraph SCXO45488363 BCX0" style="text-align: left;"><span style="background-color: inherit; line-height: 19.55px; color: windowtext;"><span>Diversity produced from a handful of fungal species</span></span><span style="line-height: 19.55px; color: windowtext;"><span>&nbsp;</span></span></p></li></ul></li></ul><p></p>